Loading…

Anomaly detection inspired by immune network theory: A proposal

Previous research in supervised and unsupervised anomaly detection normally employ a static model of normal behaviour (normal-model) throughout the lifetime of the system. However, there are real world applications such as swarm robotics and wireless sensor networks where what is perceived as normal...

Full description

Saved in:
Bibliographic Details
Main Authors: HuiKeng Lau, Timmis, J., Bate, I.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous research in supervised and unsupervised anomaly detection normally employ a static model of normal behaviour (normal-model) throughout the lifetime of the system. However, there are real world applications such as swarm robotics and wireless sensor networks where what is perceived as normal behaviour changes accordingly to the changes in the environment. To cater for such systems, dynamically updating the normal-model is required. In this paper, we examine the requirements from a range of distributed autonomous systems and then propose a novel unsupervised anomaly detection architecture capable of online adaptation inspired by the vertebrate immune system.
ISSN:1089-778X
1941-0026
DOI:10.1109/CEC.2009.4983328