Loading…
Supermodes of high-repetition-rate passively mode-locked semiconductor lasers
We present a steady-state analysis of high-repetition-rate passively mode-locked semiconductor lasers. The analysis includes effects of amplitude-to-phase coupling in both gain and absorber sections. A many-mode eigenvalue approach is presented to obtain supermode solutions. Using a nearest-neighbor...
Saved in:
Published in: | IEEE journal of quantum electronics 1996-06, Vol.32 (6), p.941-952, Article 941 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a steady-state analysis of high-repetition-rate passively mode-locked semiconductor lasers. The analysis includes effects of amplitude-to-phase coupling in both gain and absorber sections. A many-mode eigenvalue approach is presented to obtain supermode solutions. Using a nearest-neighbor mode coupling approximation, chirp-free pulse generation and electrically chirp-controlled operation are explained for the first time. The presence of a nonzero alpha parameter is found to change the symmetry of the supermode and significantly reduce the mode-locking range over which the lowest order supermode remains the minimum gain solution. An increase in absorber strength tends to lead to downchirped pulses. The effects of individual laser parameters are considered, and agreement with recent experimental results is discussed. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.502370 |