Loading…

Time-Frequency Sparsity by Removing Perceptually Irrelevant Components Using a Simple Model of Simultaneous Masking

We present an algorithm for removing time-frequency components, found by a standard Gabor transform, of a ldquoreal-worldrdquo sound while causing no audible difference to the original sound after resynthesis. Thus, this representation is made sparser. The selection of removable components is based...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2010-01, Vol.18 (1), p.34-49
Main Authors: Balazs, P., Laback, B., Eckel, G., Deutsch, W.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an algorithm for removing time-frequency components, found by a standard Gabor transform, of a ldquoreal-worldrdquo sound while causing no audible difference to the original sound after resynthesis. Thus, this representation is made sparser. The selection of removable components is based on a simple model of simultaneous masking in the auditory system. Important goals were the applicability to any real-world music and speech sound, integrating mutual masking effects between time-frequency components, coping with the time-frequency spread of such an operation, and computational efficiency. The proposed algorithm first determines an estimation of the masked threshold within an analysis window. The masked threshold function is then shifted in level by an amount determined experimentally, and all components falling below this function (the irrelevance threshold) are removed. This shift gives a conservative way to deal with uncertainty effects resulting from removing time-frequency components and with inaccuracies in the masking model. The removal of components is described as an adaptive Gabor multiplier. Thirty-six normal hearing subjects participated in an experiment to determine the maximum shift value for which they could not discriminate the irrelevance filtered signal from the original signal. On average across the test stimuli, 32 percent of the time-frequency components fell below the irrelevance threshold.
ISSN:1558-7916
1558-7924
DOI:10.1109/TASL.2009.2023164