Loading…
Explicit submodeling and digital image correlation based life-prediction of leadfree electronics under shock-impact
Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component's survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life predic...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 555 |
container_issue | |
container_start_page | 542 |
container_title | |
container_volume | |
creator | Lall, P. Shantaram, S. Angral, A. Kulkarni, M. |
description | Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component's survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125degC for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments. |
doi_str_mv | 10.1109/ECTC.2009.5074067 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5074067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5074067</ieee_id><sourcerecordid>5074067</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-77d7dcc598b4458ee8a7a276db6c80c122f9888d988c9133a1c3a9cd419589c03</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjDew1n6A-JIf2JrrJnmUpV6g4Et9LtmTszWa7pZkBf17F63zMAMzMDBDyA1nS86Zu1s1m2YpGHNLzYxitTkhC2csV0JNMLU4JTMhjam0EfUZufoPdH1OZkzXrtKayUuyKOWdTVBacqtmpKy-DilCHGn5bPdDwBT7HfV9oCHu4ugTjXu_QwpDzpj8GIeetr5goCl2WB0yhgi_7tDRhD50GZFiQhjz0Eco9LMPmGl5G-CjivuDh_GaXHQ-FVwcdU5eH1ab5qlavzw-N_frKnKjx8qYYAKAdrZVSltE640Xpg5tDZYBF6Jz1towETgupecgvYOguNPWAZNzcvvXGxFxe8jTkvy9Pf4nfwC2XmGM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Explicit submodeling and digital image correlation based life-prediction of leadfree electronics under shock-impact</title><source>IEEE Xplore All Conference Series</source><creator>Lall, P. ; Shantaram, S. ; Angral, A. ; Kulkarni, M.</creator><creatorcontrib>Lall, P. ; Shantaram, S. ; Angral, A. ; Kulkarni, M.</creatorcontrib><description>Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component's survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125degC for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.</description><identifier>ISSN: 0569-5503</identifier><identifier>ISBN: 1424444756</identifier><identifier>ISBN: 9781424444755</identifier><identifier>EISSN: 2377-5726</identifier><identifier>EISBN: 9781424444762</identifier><identifier>EISBN: 1424444764</identifier><identifier>DOI: 10.1109/ECTC.2009.5074067</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aging ; Assembly ; Capacitive sensors ; Digital images ; Electronic packaging thermal management ; Environmentally friendly manufacturing techniques ; Finite element methods ; History ; Lead ; Strain measurement</subject><ispartof>2009 59th Electronic Components and Technology Conference, 2009, p.542-555</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5074067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5074067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lall, P.</creatorcontrib><creatorcontrib>Shantaram, S.</creatorcontrib><creatorcontrib>Angral, A.</creatorcontrib><creatorcontrib>Kulkarni, M.</creatorcontrib><title>Explicit submodeling and digital image correlation based life-prediction of leadfree electronics under shock-impact</title><title>2009 59th Electronic Components and Technology Conference</title><addtitle>ECTC</addtitle><description>Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component's survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125degC for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.</description><subject>Aging</subject><subject>Assembly</subject><subject>Capacitive sensors</subject><subject>Digital images</subject><subject>Electronic packaging thermal management</subject><subject>Environmentally friendly manufacturing techniques</subject><subject>Finite element methods</subject><subject>History</subject><subject>Lead</subject><subject>Strain measurement</subject><issn>0569-5503</issn><issn>2377-5726</issn><isbn>1424444756</isbn><isbn>9781424444755</isbn><isbn>9781424444762</isbn><isbn>1424444764</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtKAzEUjDew1n6A-JIf2JrrJnmUpV6g4Et9LtmTszWa7pZkBf17F63zMAMzMDBDyA1nS86Zu1s1m2YpGHNLzYxitTkhC2csV0JNMLU4JTMhjam0EfUZufoPdH1OZkzXrtKayUuyKOWdTVBacqtmpKy-DilCHGn5bPdDwBT7HfV9oCHu4ugTjXu_QwpDzpj8GIeetr5goCl2WB0yhgi_7tDRhD50GZFiQhjz0Eco9LMPmGl5G-CjivuDh_GaXHQ-FVwcdU5eH1ab5qlavzw-N_frKnKjx8qYYAKAdrZVSltE640Xpg5tDZYBF6Jz1towETgupecgvYOguNPWAZNzcvvXGxFxe8jTkvy9Pf4nfwC2XmGM</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Lall, P.</creator><creator>Shantaram, S.</creator><creator>Angral, A.</creator><creator>Kulkarni, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Explicit submodeling and digital image correlation based life-prediction of leadfree electronics under shock-impact</title><author>Lall, P. ; Shantaram, S. ; Angral, A. ; Kulkarni, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-77d7dcc598b4458ee8a7a276db6c80c122f9888d988c9133a1c3a9cd419589c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aging</topic><topic>Assembly</topic><topic>Capacitive sensors</topic><topic>Digital images</topic><topic>Electronic packaging thermal management</topic><topic>Environmentally friendly manufacturing techniques</topic><topic>Finite element methods</topic><topic>History</topic><topic>Lead</topic><topic>Strain measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Lall, P.</creatorcontrib><creatorcontrib>Shantaram, S.</creatorcontrib><creatorcontrib>Angral, A.</creatorcontrib><creatorcontrib>Kulkarni, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lall, P.</au><au>Shantaram, S.</au><au>Angral, A.</au><au>Kulkarni, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Explicit submodeling and digital image correlation based life-prediction of leadfree electronics under shock-impact</atitle><btitle>2009 59th Electronic Components and Technology Conference</btitle><stitle>ECTC</stitle><date>2009-05</date><risdate>2009</risdate><spage>542</spage><epage>555</epage><pages>542-555</pages><issn>0569-5503</issn><eissn>2377-5726</eissn><isbn>1424444756</isbn><isbn>9781424444755</isbn><eisbn>9781424444762</eisbn><eisbn>1424444764</eisbn><abstract>Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component's survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125degC for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.</abstract><pub>IEEE</pub><doi>10.1109/ECTC.2009.5074067</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0569-5503 |
ispartof | 2009 59th Electronic Components and Technology Conference, 2009, p.542-555 |
issn | 0569-5503 2377-5726 |
language | eng |
recordid | cdi_ieee_primary_5074067 |
source | IEEE Xplore All Conference Series |
subjects | Aging Assembly Capacitive sensors Digital images Electronic packaging thermal management Environmentally friendly manufacturing techniques Finite element methods History Lead Strain measurement |
title | Explicit submodeling and digital image correlation based life-prediction of leadfree electronics under shock-impact |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Explicit%20submodeling%20and%20digital%20image%20correlation%20based%20life-prediction%20of%20leadfree%20electronics%20under%20shock-impact&rft.btitle=2009%2059th%20Electronic%20Components%20and%20Technology%20Conference&rft.au=Lall,%20P.&rft.date=2009-05&rft.spage=542&rft.epage=555&rft.pages=542-555&rft.issn=0569-5503&rft.eissn=2377-5726&rft.isbn=1424444756&rft.isbn_list=9781424444755&rft_id=info:doi/10.1109/ECTC.2009.5074067&rft.eisbn=9781424444762&rft.eisbn_list=1424444764&rft_dat=%3Cieee_CHZPO%3E5074067%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-77d7dcc598b4458ee8a7a276db6c80c122f9888d988c9133a1c3a9cd419589c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5074067&rfr_iscdi=true |