Loading…
Lightweight acoustic classification for cane-toad monitoring
We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the re...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1605 |
container_issue | |
container_start_page | 1601 |
container_title | |
container_volume | |
creator | Thanh Dang Bulusu, N. Wen Hu |
description | We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%. |
doi_str_mv | 10.1109/ACSSC.2008.5074693 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5074693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5074693</ieee_id><sourcerecordid>5074693</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-8dcc7a6975b24ab45ad71f3e55415f43836d8ece6f7bbf3bf6f6ce3e774fffd3</originalsourceid><addsrcrecordid>eNo1kMtKxDAYheMNrGNfQDd9gdQkf67gZijjBQouZvZDmiZjZKaRJiK-vYrjWZxvceBbHIRuKGkpJeZu2a3XXcsI0a0giksDJ-iKcsY5M5yyU1QxoSRmQOAM1Ubp_42Qc1RRIjSWYOAS1Tm_kZ9wAdroCt33cfdaPv1vN9alj1yia9ze5hxDdLbENDUhzY2zk8cl2bE5pCmWNMdpd40ugt1nXx-5QJuH1aZ7wv3L43O37HFk1BSsR-eUlUaJgXE7cGFHRQN4ITgVgYMGOWrvvAxqGAIMQQbpPHileAhhhAW6_dNG7_32fY4HO39tjz_ANz0pTog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lightweight acoustic classification for cane-toad monitoring</title><source>IEEE Xplore All Conference Series</source><creator>Thanh Dang ; Bulusu, N. ; Wen Hu</creator><creatorcontrib>Thanh Dang ; Bulusu, N. ; Wen Hu</creatorcontrib><description>We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424429400</identifier><identifier>ISBN: 1424429404</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1424429412</identifier><identifier>EISBN: 9781424429417</identifier><identifier>DOI: 10.1109/ACSSC.2008.5074693</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic devices ; Acoustic sensors ; Acoustic signal detection ; Australia ; Bandwidth ; Classification algorithms ; Energy consumption ; Histograms ; Monitoring ; Signal processing</subject><ispartof>2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.1601-1605</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5074693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5074693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thanh Dang</creatorcontrib><creatorcontrib>Bulusu, N.</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><title>Lightweight acoustic classification for cane-toad monitoring</title><title>2008 42nd Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.</description><subject>Acoustic devices</subject><subject>Acoustic sensors</subject><subject>Acoustic signal detection</subject><subject>Australia</subject><subject>Bandwidth</subject><subject>Classification algorithms</subject><subject>Energy consumption</subject><subject>Histograms</subject><subject>Monitoring</subject><subject>Signal processing</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424429400</isbn><isbn>1424429404</isbn><isbn>1424429412</isbn><isbn>9781424429417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKxDAYheMNrGNfQDd9gdQkf67gZijjBQouZvZDmiZjZKaRJiK-vYrjWZxvceBbHIRuKGkpJeZu2a3XXcsI0a0giksDJ-iKcsY5M5yyU1QxoSRmQOAM1Ubp_42Qc1RRIjSWYOAS1Tm_kZ9wAdroCt33cfdaPv1vN9alj1yia9ze5hxDdLbENDUhzY2zk8cl2bE5pCmWNMdpd40ugt1nXx-5QJuH1aZ7wv3L43O37HFk1BSsR-eUlUaJgXE7cGFHRQN4ITgVgYMGOWrvvAxqGAIMQQbpPHileAhhhAW6_dNG7_32fY4HO39tjz_ANz0pTog</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Thanh Dang</creator><creator>Bulusu, N.</creator><creator>Wen Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Lightweight acoustic classification for cane-toad monitoring</title><author>Thanh Dang ; Bulusu, N. ; Wen Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-8dcc7a6975b24ab45ad71f3e55415f43836d8ece6f7bbf3bf6f6ce3e774fffd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustic devices</topic><topic>Acoustic sensors</topic><topic>Acoustic signal detection</topic><topic>Australia</topic><topic>Bandwidth</topic><topic>Classification algorithms</topic><topic>Energy consumption</topic><topic>Histograms</topic><topic>Monitoring</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Thanh Dang</creatorcontrib><creatorcontrib>Bulusu, N.</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thanh Dang</au><au>Bulusu, N.</au><au>Wen Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lightweight acoustic classification for cane-toad monitoring</atitle><btitle>2008 42nd Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>1601</spage><epage>1605</epage><pages>1601-1605</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424429400</isbn><isbn>1424429404</isbn><eisbn>1424429412</eisbn><eisbn>9781424429417</eisbn><abstract>We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2008.5074693</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | 2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.1601-1605 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_5074693 |
source | IEEE Xplore All Conference Series |
subjects | Acoustic devices Acoustic sensors Acoustic signal detection Australia Bandwidth Classification algorithms Energy consumption Histograms Monitoring Signal processing |
title | Lightweight acoustic classification for cane-toad monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lightweight%20acoustic%20classification%20for%20cane-toad%20monitoring&rft.btitle=2008%2042nd%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Thanh%20Dang&rft.date=2008-01-01&rft.spage=1601&rft.epage=1605&rft.pages=1601-1605&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424429400&rft.isbn_list=1424429404&rft_id=info:doi/10.1109/ACSSC.2008.5074693&rft.eisbn=1424429412&rft.eisbn_list=9781424429417&rft_dat=%3Cieee_CHZPO%3E5074693%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-8dcc7a6975b24ab45ad71f3e55415f43836d8ece6f7bbf3bf6f6ce3e774fffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5074693&rfr_iscdi=true |