Loading…

Lightweight acoustic classification for cane-toad monitoring

We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the re...

Full description

Saved in:
Bibliographic Details
Main Authors: Thanh Dang, Bulusu, N., Wen Hu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1605
container_issue
container_start_page 1601
container_title
container_volume
creator Thanh Dang
Bulusu, N.
Wen Hu
description We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.
doi_str_mv 10.1109/ACSSC.2008.5074693
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5074693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5074693</ieee_id><sourcerecordid>5074693</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-8dcc7a6975b24ab45ad71f3e55415f43836d8ece6f7bbf3bf6f6ce3e774fffd3</originalsourceid><addsrcrecordid>eNo1kMtKxDAYheMNrGNfQDd9gdQkf67gZijjBQouZvZDmiZjZKaRJiK-vYrjWZxvceBbHIRuKGkpJeZu2a3XXcsI0a0giksDJ-iKcsY5M5yyU1QxoSRmQOAM1Ubp_42Qc1RRIjSWYOAS1Tm_kZ9wAdroCt33cfdaPv1vN9alj1yia9ze5hxDdLbENDUhzY2zk8cl2bE5pCmWNMdpd40ugt1nXx-5QJuH1aZ7wv3L43O37HFk1BSsR-eUlUaJgXE7cGFHRQN4ITgVgYMGOWrvvAxqGAIMQQbpPHileAhhhAW6_dNG7_32fY4HO39tjz_ANz0pTog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lightweight acoustic classification for cane-toad monitoring</title><source>IEEE Xplore All Conference Series</source><creator>Thanh Dang ; Bulusu, N. ; Wen Hu</creator><creatorcontrib>Thanh Dang ; Bulusu, N. ; Wen Hu</creatorcontrib><description>We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424429400</identifier><identifier>ISBN: 1424429404</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1424429412</identifier><identifier>EISBN: 9781424429417</identifier><identifier>DOI: 10.1109/ACSSC.2008.5074693</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic devices ; Acoustic sensors ; Acoustic signal detection ; Australia ; Bandwidth ; Classification algorithms ; Energy consumption ; Histograms ; Monitoring ; Signal processing</subject><ispartof>2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.1601-1605</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5074693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5074693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thanh Dang</creatorcontrib><creatorcontrib>Bulusu, N.</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><title>Lightweight acoustic classification for cane-toad monitoring</title><title>2008 42nd Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.</description><subject>Acoustic devices</subject><subject>Acoustic sensors</subject><subject>Acoustic signal detection</subject><subject>Australia</subject><subject>Bandwidth</subject><subject>Classification algorithms</subject><subject>Energy consumption</subject><subject>Histograms</subject><subject>Monitoring</subject><subject>Signal processing</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424429400</isbn><isbn>1424429404</isbn><isbn>1424429412</isbn><isbn>9781424429417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKxDAYheMNrGNfQDd9gdQkf67gZijjBQouZvZDmiZjZKaRJiK-vYrjWZxvceBbHIRuKGkpJeZu2a3XXcsI0a0giksDJ-iKcsY5M5yyU1QxoSRmQOAM1Ubp_42Qc1RRIjSWYOAS1Tm_kZ9wAdroCt33cfdaPv1vN9alj1yia9ze5hxDdLbENDUhzY2zk8cl2bE5pCmWNMdpd40ugt1nXx-5QJuH1aZ7wv3L43O37HFk1BSsR-eUlUaJgXE7cGFHRQN4ITgVgYMGOWrvvAxqGAIMQQbpPHileAhhhAW6_dNG7_32fY4HO39tjz_ANz0pTog</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Thanh Dang</creator><creator>Bulusu, N.</creator><creator>Wen Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>Lightweight acoustic classification for cane-toad monitoring</title><author>Thanh Dang ; Bulusu, N. ; Wen Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-8dcc7a6975b24ab45ad71f3e55415f43836d8ece6f7bbf3bf6f6ce3e774fffd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustic devices</topic><topic>Acoustic sensors</topic><topic>Acoustic signal detection</topic><topic>Australia</topic><topic>Bandwidth</topic><topic>Classification algorithms</topic><topic>Energy consumption</topic><topic>Histograms</topic><topic>Monitoring</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Thanh Dang</creatorcontrib><creatorcontrib>Bulusu, N.</creatorcontrib><creatorcontrib>Wen Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thanh Dang</au><au>Bulusu, N.</au><au>Wen Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lightweight acoustic classification for cane-toad monitoring</atitle><btitle>2008 42nd Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>1601</spage><epage>1605</epage><pages>1601-1605</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424429400</isbn><isbn>1424429404</isbn><eisbn>1424429412</eisbn><eisbn>9781424429417</eisbn><abstract>We propose a light weight algorithm to classify cane-toads, a non-native invasive amphibian species in Australia as well as other native frog species, based on their vocalizations using sharply resource-constrained acoustic sensors. The goal is to enable fast in-network frog classification at the resource-constrained sensors so as to minimize energy consumption of the sensor network by reducing the amount of data transmitted to a central server. Each sensor randomly and independently samples a signal at a sub-Nyquist rate. The vocalization envelopes are extracted and matched with the original signal envelopes to find the best match. The computational complexity of the algorithm is O(n). It also requires less than 2KB of data memory. Our experiments on frog vocalizations show that our approach performs well, providing an accuracy of 90% and a miss rate of less than 5%.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2008.5074693</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.1601-1605
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5074693
source IEEE Xplore All Conference Series
subjects Acoustic devices
Acoustic sensors
Acoustic signal detection
Australia
Bandwidth
Classification algorithms
Energy consumption
Histograms
Monitoring
Signal processing
title Lightweight acoustic classification for cane-toad monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lightweight%20acoustic%20classification%20for%20cane-toad%20monitoring&rft.btitle=2008%2042nd%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Thanh%20Dang&rft.date=2008-01-01&rft.spage=1601&rft.epage=1605&rft.pages=1601-1605&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424429400&rft.isbn_list=1424429404&rft_id=info:doi/10.1109/ACSSC.2008.5074693&rft.eisbn=1424429412&rft.eisbn_list=9781424429417&rft_dat=%3Cieee_CHZPO%3E5074693%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-8dcc7a6975b24ab45ad71f3e55415f43836d8ece6f7bbf3bf6f6ce3e774fffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5074693&rfr_iscdi=true