Loading…
Quantitative Evaluation of Software Quality Metrics in Open-Source Projects
The validation of software quality metrics lacks statistical significance. One reason for this is that the data collection requires quite some effort. To help solve this problem, we develop tools for metrics analysis of a large number of software projects (146 projects with ca. 70.000 classes and in...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1072 |
container_issue | |
container_start_page | 1067 |
container_title | |
container_volume | |
creator | Barkmann, H. Lincke, R. Lowe, W. |
description | The validation of software quality metrics lacks statistical significance. One reason for this is that the data collection requires quite some effort. To help solve this problem, we develop tools for metrics analysis of a large number of software projects (146 projects with ca. 70.000 classes and interfaces and over 11 million lines of code). Moreover, validation of software quality metrics should focus on relevant metrics, i.e., correlated metrics need not to be validated independently. Based on our statistical basis, we identify correlation between several metrics from well-known object-oriented metrics suites. Besides, we present early results of typical metrics values and possible thresholds. |
doi_str_mv | 10.1109/WAINA.2009.190 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5136793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5136793</ieee_id><sourcerecordid>5136793</sourcerecordid><originalsourceid>FETCH-LOGICAL-i215t-d94e2864babab22065ea64f907dff28dca78ce778c51937257c4e59a34b296153</originalsourceid><addsrcrecordid>eNotjE1Lw0AYhFdE0NZevXjZP5C435v3GErVYrVKFb2VbfIubIlJ2Wwq_fcGdAbmmcMwhNxwlnPO4O6zXL6UuWAMcg7sjEyYNaClkaDPyYQroZQEgK9LMuv7PRultCgYXJGnt8G1KSSXwhHp4uiaYaxdSztPN51PPy4iHTdNSCf6jCmGqqehpesDttmmG2KF9DV2e6xSf00uvGt6nP1zSj7uF-_zx2y1fljOy1UWBNcpq0GhKIzaudFCMKPRGeWB2dp7UdSVs0WFdgzNQVqhbaVQg5NqJ8BwLafk9u83IOL2EMO3i6et5tJYkPIXtgtNhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quantitative Evaluation of Software Quality Metrics in Open-Source Projects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barkmann, H. ; Lincke, R. ; Lowe, W.</creator><creatorcontrib>Barkmann, H. ; Lincke, R. ; Lowe, W.</creatorcontrib><description>The validation of software quality metrics lacks statistical significance. One reason for this is that the data collection requires quite some effort. To help solve this problem, we develop tools for metrics analysis of a large number of software projects (146 projects with ca. 70.000 classes and interfaces and over 11 million lines of code). Moreover, validation of software quality metrics should focus on relevant metrics, i.e., correlated metrics need not to be validated independently. Based on our statistical basis, we identify correlation between several metrics from well-known object-oriented metrics suites. Besides, we present early results of typical metrics values and possible thresholds.</description><identifier>ISBN: 142443999X</identifier><identifier>ISBN: 9781424439997</identifier><identifier>EISBN: 0769536395</identifier><identifier>EISBN: 9780769536392</identifier><identifier>DOI: 10.1109/WAINA.2009.190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Mathematics ; Open source software ; Quality management ; Software maintenance ; Software metrics ; Software quality ; Software tools ; Systems engineering and theory</subject><ispartof>2009 International Conference on Advanced Information Networking and Applications Workshops, 2009, p.1067-1072</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5136793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5136793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barkmann, H.</creatorcontrib><creatorcontrib>Lincke, R.</creatorcontrib><creatorcontrib>Lowe, W.</creatorcontrib><title>Quantitative Evaluation of Software Quality Metrics in Open-Source Projects</title><title>2009 International Conference on Advanced Information Networking and Applications Workshops</title><addtitle>WAINA</addtitle><description>The validation of software quality metrics lacks statistical significance. One reason for this is that the data collection requires quite some effort. To help solve this problem, we develop tools for metrics analysis of a large number of software projects (146 projects with ca. 70.000 classes and interfaces and over 11 million lines of code). Moreover, validation of software quality metrics should focus on relevant metrics, i.e., correlated metrics need not to be validated independently. Based on our statistical basis, we identify correlation between several metrics from well-known object-oriented metrics suites. Besides, we present early results of typical metrics values and possible thresholds.</description><subject>Application software</subject><subject>Mathematics</subject><subject>Open source software</subject><subject>Quality management</subject><subject>Software maintenance</subject><subject>Software metrics</subject><subject>Software quality</subject><subject>Software tools</subject><subject>Systems engineering and theory</subject><isbn>142443999X</isbn><isbn>9781424439997</isbn><isbn>0769536395</isbn><isbn>9780769536392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AYhFdE0NZevXjZP5C435v3GErVYrVKFb2VbfIubIlJ2Wwq_fcGdAbmmcMwhNxwlnPO4O6zXL6UuWAMcg7sjEyYNaClkaDPyYQroZQEgK9LMuv7PRultCgYXJGnt8G1KSSXwhHp4uiaYaxdSztPN51PPy4iHTdNSCf6jCmGqqehpesDttmmG2KF9DV2e6xSf00uvGt6nP1zSj7uF-_zx2y1fljOy1UWBNcpq0GhKIzaudFCMKPRGeWB2dp7UdSVs0WFdgzNQVqhbaVQg5NqJ8BwLafk9u83IOL2EMO3i6et5tJYkPIXtgtNhA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Barkmann, H.</creator><creator>Lincke, R.</creator><creator>Lowe, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090101</creationdate><title>Quantitative Evaluation of Software Quality Metrics in Open-Source Projects</title><author>Barkmann, H. ; Lincke, R. ; Lowe, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i215t-d94e2864babab22065ea64f907dff28dca78ce778c51937257c4e59a34b296153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Mathematics</topic><topic>Open source software</topic><topic>Quality management</topic><topic>Software maintenance</topic><topic>Software metrics</topic><topic>Software quality</topic><topic>Software tools</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Barkmann, H.</creatorcontrib><creatorcontrib>Lincke, R.</creatorcontrib><creatorcontrib>Lowe, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barkmann, H.</au><au>Lincke, R.</au><au>Lowe, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantitative Evaluation of Software Quality Metrics in Open-Source Projects</atitle><btitle>2009 International Conference on Advanced Information Networking and Applications Workshops</btitle><stitle>WAINA</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>1067</spage><epage>1072</epage><pages>1067-1072</pages><isbn>142443999X</isbn><isbn>9781424439997</isbn><eisbn>0769536395</eisbn><eisbn>9780769536392</eisbn><abstract>The validation of software quality metrics lacks statistical significance. One reason for this is that the data collection requires quite some effort. To help solve this problem, we develop tools for metrics analysis of a large number of software projects (146 projects with ca. 70.000 classes and interfaces and over 11 million lines of code). Moreover, validation of software quality metrics should focus on relevant metrics, i.e., correlated metrics need not to be validated independently. Based on our statistical basis, we identify correlation between several metrics from well-known object-oriented metrics suites. Besides, we present early results of typical metrics values and possible thresholds.</abstract><pub>IEEE</pub><doi>10.1109/WAINA.2009.190</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142443999X |
ispartof | 2009 International Conference on Advanced Information Networking and Applications Workshops, 2009, p.1067-1072 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5136793 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Mathematics Open source software Quality management Software maintenance Software metrics Software quality Software tools Systems engineering and theory |
title | Quantitative Evaluation of Software Quality Metrics in Open-Source Projects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantitative%20Evaluation%20of%20Software%20Quality%20Metrics%20in%20Open-Source%20Projects&rft.btitle=2009%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20Workshops&rft.au=Barkmann,%20H.&rft.date=2009-01-01&rft.spage=1067&rft.epage=1072&rft.pages=1067-1072&rft.isbn=142443999X&rft.isbn_list=9781424439997&rft_id=info:doi/10.1109/WAINA.2009.190&rft.eisbn=0769536395&rft.eisbn_list=9780769536392&rft_dat=%3Cieee_6IE%3E5136793%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i215t-d94e2864babab22065ea64f907dff28dca78ce778c51937257c4e59a34b296153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5136793&rfr_iscdi=true |