Loading…
Multi-objective optimization of an autonomous underwater vehicle
A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Martz, M. Neu, W.L. |
description | A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed. |
doi_str_mv | 10.1109/OCEANS.2008.5151960 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5151960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5151960</ieee_id><sourcerecordid>5151960</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bdd8944a9394e40c6d06454410476a5b59dc4b0de9ff407ac852b698023d5b2a3</originalsourceid><addsrcrecordid>eNotkMFOAjEURWuUREC-gM38wOBr57XTt5MQRBOUhexJO-3EGpiSmQ5Gv16Nszq5i3MXh7E5hwXnQPe71Xr5-rYQAHohueSk4IrNqNQcBaJQAvg1mwyDU3nDxvCLvCy0HLHJn0eAuqRbNuu6YIFzBbzQNGYPL_0xhTzaD1-lcPFZPKdwCt8mhdhksc5Mk5k-xSaeYt9lfeN8-2mSb7OLfw_V0d-xUW2OnZ8NnLL943q_esq3u83zarnNA0HKrXOaEA0VhB6hUg4USkQOWCojrSRXoQXnqa4RSlNpKawiDaJw0gpTTNn8_zZ47w_nNpxM-3UYYhQ_SetPYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-objective optimization of an autonomous underwater vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Martz, M. ; Neu, W.L.</creator><creatorcontrib>Martz, M. ; Neu, W.L.</creatorcontrib><description>A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.</description><identifier>ISSN: 0197-7385</identifier><identifier>ISBN: 1424426197</identifier><identifier>ISBN: 9781424426195</identifier><identifier>EISBN: 9781424426201</identifier><identifier>EISBN: 1424426200</identifier><identifier>DOI: 10.1109/OCEANS.2008.5151960</identifier><identifier>LCCN: 2008904879</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Cost function ; Design engineering ; Design optimization ; Genetic algorithms ; Genetic engineering ; Performance analysis ; Process design ; Sea measurements ; Underwater vehicles</subject><ispartof>OCEANS 2008, 2008, p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5151960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5151960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martz, M.</creatorcontrib><creatorcontrib>Neu, W.L.</creatorcontrib><title>Multi-objective optimization of an autonomous underwater vehicle</title><title>OCEANS 2008</title><addtitle>OCEANS</addtitle><description>A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.</description><subject>Algorithm design and analysis</subject><subject>Cost function</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Performance analysis</subject><subject>Process design</subject><subject>Sea measurements</subject><subject>Underwater vehicles</subject><issn>0197-7385</issn><isbn>1424426197</isbn><isbn>9781424426195</isbn><isbn>9781424426201</isbn><isbn>1424426200</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOAjEURWuUREC-gM38wOBr57XTt5MQRBOUhexJO-3EGpiSmQ5Gv16Nszq5i3MXh7E5hwXnQPe71Xr5-rYQAHohueSk4IrNqNQcBaJQAvg1mwyDU3nDxvCLvCy0HLHJn0eAuqRbNuu6YIFzBbzQNGYPL_0xhTzaD1-lcPFZPKdwCt8mhdhksc5Mk5k-xSaeYt9lfeN8-2mSb7OLfw_V0d-xUW2OnZ8NnLL943q_esq3u83zarnNA0HKrXOaEA0VhB6hUg4USkQOWCojrSRXoQXnqa4RSlNpKawiDaJw0gpTTNn8_zZ47w_nNpxM-3UYYhQ_SetPYg</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Martz, M.</creator><creator>Neu, W.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200809</creationdate><title>Multi-objective optimization of an autonomous underwater vehicle</title><author>Martz, M. ; Neu, W.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bdd8944a9394e40c6d06454410476a5b59dc4b0de9ff407ac852b698023d5b2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Cost function</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Performance analysis</topic><topic>Process design</topic><topic>Sea measurements</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martz, M.</creatorcontrib><creatorcontrib>Neu, W.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martz, M.</au><au>Neu, W.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective optimization of an autonomous underwater vehicle</atitle><btitle>OCEANS 2008</btitle><stitle>OCEANS</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0197-7385</issn><isbn>1424426197</isbn><isbn>9781424426195</isbn><eisbn>9781424426201</eisbn><eisbn>1424426200</eisbn><abstract>A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.</abstract><pub>IEEE</pub><doi>10.1109/OCEANS.2008.5151960</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0197-7385 |
ispartof | OCEANS 2008, 2008, p.1-9 |
issn | 0197-7385 |
language | eng |
recordid | cdi_ieee_primary_5151960 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Cost function Design engineering Design optimization Genetic algorithms Genetic engineering Performance analysis Process design Sea measurements Underwater vehicles |
title | Multi-objective optimization of an autonomous underwater vehicle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20optimization%20of%20an%20autonomous%20underwater%20vehicle&rft.btitle=OCEANS%202008&rft.au=Martz,%20M.&rft.date=2008-09&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0197-7385&rft.isbn=1424426197&rft.isbn_list=9781424426195&rft_id=info:doi/10.1109/OCEANS.2008.5151960&rft.eisbn=9781424426201&rft.eisbn_list=1424426200&rft_dat=%3Cieee_6IE%3E5151960%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bdd8944a9394e40c6d06454410476a5b59dc4b0de9ff407ac852b698023d5b2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5151960&rfr_iscdi=true |