Loading…

Multi-objective optimization of an autonomous underwater vehicle

A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal...

Full description

Saved in:
Bibliographic Details
Main Authors: Martz, M., Neu, W.L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9
container_issue
container_start_page 1
container_title
container_volume
creator Martz, M.
Neu, W.L.
description A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.
doi_str_mv 10.1109/OCEANS.2008.5151960
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5151960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5151960</ieee_id><sourcerecordid>5151960</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bdd8944a9394e40c6d06454410476a5b59dc4b0de9ff407ac852b698023d5b2a3</originalsourceid><addsrcrecordid>eNotkMFOAjEURWuUREC-gM38wOBr57XTt5MQRBOUhexJO-3EGpiSmQ5Gv16Nszq5i3MXh7E5hwXnQPe71Xr5-rYQAHohueSk4IrNqNQcBaJQAvg1mwyDU3nDxvCLvCy0HLHJn0eAuqRbNuu6YIFzBbzQNGYPL_0xhTzaD1-lcPFZPKdwCt8mhdhksc5Mk5k-xSaeYt9lfeN8-2mSb7OLfw_V0d-xUW2OnZ8NnLL943q_esq3u83zarnNA0HKrXOaEA0VhB6hUg4USkQOWCojrSRXoQXnqa4RSlNpKawiDaJw0gpTTNn8_zZ47w_nNpxM-3UYYhQ_SetPYg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-objective optimization of an autonomous underwater vehicle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Martz, M. ; Neu, W.L.</creator><creatorcontrib>Martz, M. ; Neu, W.L.</creatorcontrib><description>A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.</description><identifier>ISSN: 0197-7385</identifier><identifier>ISBN: 1424426197</identifier><identifier>ISBN: 9781424426195</identifier><identifier>EISBN: 9781424426201</identifier><identifier>EISBN: 1424426200</identifier><identifier>DOI: 10.1109/OCEANS.2008.5151960</identifier><identifier>LCCN: 2008904879</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Cost function ; Design engineering ; Design optimization ; Genetic algorithms ; Genetic engineering ; Performance analysis ; Process design ; Sea measurements ; Underwater vehicles</subject><ispartof>OCEANS 2008, 2008, p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5151960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5151960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martz, M.</creatorcontrib><creatorcontrib>Neu, W.L.</creatorcontrib><title>Multi-objective optimization of an autonomous underwater vehicle</title><title>OCEANS 2008</title><addtitle>OCEANS</addtitle><description>A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.</description><subject>Algorithm design and analysis</subject><subject>Cost function</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Performance analysis</subject><subject>Process design</subject><subject>Sea measurements</subject><subject>Underwater vehicles</subject><issn>0197-7385</issn><isbn>1424426197</isbn><isbn>9781424426195</isbn><isbn>9781424426201</isbn><isbn>1424426200</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFOAjEURWuUREC-gM38wOBr57XTt5MQRBOUhexJO-3EGpiSmQ5Gv16Nszq5i3MXh7E5hwXnQPe71Xr5-rYQAHohueSk4IrNqNQcBaJQAvg1mwyDU3nDxvCLvCy0HLHJn0eAuqRbNuu6YIFzBbzQNGYPL_0xhTzaD1-lcPFZPKdwCt8mhdhksc5Mk5k-xSaeYt9lfeN8-2mSb7OLfw_V0d-xUW2OnZ8NnLL943q_esq3u83zarnNA0HKrXOaEA0VhB6hUg4USkQOWCojrSRXoQXnqa4RSlNpKawiDaJw0gpTTNn8_zZ47w_nNpxM-3UYYhQ_SetPYg</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Martz, M.</creator><creator>Neu, W.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200809</creationdate><title>Multi-objective optimization of an autonomous underwater vehicle</title><author>Martz, M. ; Neu, W.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bdd8944a9394e40c6d06454410476a5b59dc4b0de9ff407ac852b698023d5b2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Cost function</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Performance analysis</topic><topic>Process design</topic><topic>Sea measurements</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martz, M.</creatorcontrib><creatorcontrib>Neu, W.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martz, M.</au><au>Neu, W.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective optimization of an autonomous underwater vehicle</atitle><btitle>OCEANS 2008</btitle><stitle>OCEANS</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0197-7385</issn><isbn>1424426197</isbn><isbn>9781424426195</isbn><eisbn>9781424426201</eisbn><eisbn>1424426200</eisbn><abstract>A design optimization process for an autonomous underwater vehicle (AUV) is developed using a multiple objective genetic optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three measures of performance (MOPs): cost, effectiveness, and risk. The synthesis model is comprised of an input module, three primary AUV synthesis modules, a constraint module and three objective modules. The effectiveness determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed.</abstract><pub>IEEE</pub><doi>10.1109/OCEANS.2008.5151960</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0197-7385
ispartof OCEANS 2008, 2008, p.1-9
issn 0197-7385
language eng
recordid cdi_ieee_primary_5151960
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Cost function
Design engineering
Design optimization
Genetic algorithms
Genetic engineering
Performance analysis
Process design
Sea measurements
Underwater vehicles
title Multi-objective optimization of an autonomous underwater vehicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20optimization%20of%20an%20autonomous%20underwater%20vehicle&rft.btitle=OCEANS%202008&rft.au=Martz,%20M.&rft.date=2008-09&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0197-7385&rft.isbn=1424426197&rft.isbn_list=9781424426195&rft_id=info:doi/10.1109/OCEANS.2008.5151960&rft.eisbn=9781424426201&rft.eisbn_list=1424426200&rft_dat=%3Cieee_6IE%3E5151960%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bdd8944a9394e40c6d06454410476a5b59dc4b0de9ff407ac852b698023d5b2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5151960&rfr_iscdi=true