Loading…

All-Optical 160-Gbit/s Retiming System Using Fiber Grating Based Pulse Shaping Technology

This paper demonstrates a retiming system operating at rates of 40 and 160 Gbit/s, which incorporates a superstructured fiber Bragg grating (SSFBG) as a pulse shaping element. The original data pulses are shaped into flat-topped (rectangular) pulses to avoid conversion of their timing jitter into pu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2009-05, Vol.27 (9), p.1135-1141
Main Authors: Parmigiani, F., Oxenlowe, L.K., Galili, M., Ibsen, M., Zibar, D., Petropoulos, P., Richardson, D.J., Clausen, A.T., Jeppesen, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper demonstrates a retiming system operating at rates of 40 and 160 Gbit/s, which incorporates a superstructured fiber Bragg grating (SSFBG) as a pulse shaping element. The original data pulses are shaped into flat-topped (rectangular) pulses to avoid conversion of their timing jitter into pulse amplitude noise at the output of a nonlinear fiber-based Kerr switch. Thus retiming is performed in a single step avoiding wavelength conversion. The benefits of using shaped rather than conventional pulse forms in terms of timing jitter reduction are confirmed by bit-error rate (BER) measurements.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2008.929419