Loading…

Concept of Linguistic Variable-Based Fuzzy Ensemble Approach: Application to Interlaced HDTV Sequences

This paper addresses the problem of edge restoration in digital images. Taking advantage of an ensemble approach, multiple type-1 fuzzy filters are combined to reach a decision. The fuzzy logic concept for linguistic variables and possibility theory is discussed with regard to knowledge representati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2009-12, Vol.17 (6), p.1245-1258
Main Authors: Gwanggil Jeon, Anisetti, M., Joohyun Lee, Bellandi, V., Damiani, E., Jechang Jeong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the problem of edge restoration in digital images. Taking advantage of an ensemble approach, multiple type-1 fuzzy filters are combined to reach a decision. The fuzzy logic concept for linguistic variables and possibility theory is discussed with regard to knowledge representation and inference procedures. To improve conventional deinterlacing issues, we adopt type-1 fuzzy set concepts to design a weight-measuring approach. We demonstrate that the fuzzy ensemble approach model is well suited to image processing and provide case studies in the video-deinterlacing field. In our proposed method, five fuzzy membership functions (MFs) of linguistic variable-based fuzzy logic filters are derived from the type-1 (a.k.a. ordinary or primary) fuzzy MF. The weight-measuring process of our proposed model is used to assign weights to six candidate deinterlaced pixels (CDPs) that are interpolated according to edge direction. The use of a different MF for each direction allows the filter to characterize each pixel variation influence independently, according to its direction. The weights from all MFs are multiplied with the CDPs. The results of the empirical trials clearly show that the proposed system can successfully deal with several image types containing motion or detail elements.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2009.2026638