Loading…

Less conservative absolute stability criteria using Integral Quadratic Constraints

Lur'e systems, that are described by the feedback interconnection of a linear time invariant system and a nonlinear system, form an important class of nonlinear systems arising in many modern applications. A number of absolute stability criteria are available where the stability is guaranteed w...

Full description

Saved in:
Bibliographic Details
Main Authors: Materassi, D., Salapaka, M.V.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 118
container_issue
container_start_page 113
container_title
container_volume
creator Materassi, D.
Salapaka, M.V.
description Lur'e systems, that are described by the feedback interconnection of a linear time invariant system and a nonlinear system, form an important class of nonlinear systems arising in many modern applications. A number of absolute stability criteria are available where the stability is guaranteed with the nonlinearity restricted to a pre-specified set. Most of these criteria provide sufficient conditions for absolute stability, thus lessening the conservativeness remains a challenge. A method of reducing conservativeness is to first estimate the part of the nonlinearity that is appropriate from an asymptotic sense followed by the application of a preferred absolute stability criteria to the more restricted nonlinearity. A comprehensive framework that incorporates the above approach is developed in this paper that employs a methodology based on integral quadratic constraints as a means of describing the nonlinearity. It is shown that the developed framework can be used to conclude absolute stability of Lur'e interconnections where all of the existing criteria fail to be satisfied. Indeed, examples are provided where the nonlinearity does not fall into the classes assumed by existing absolute criteria. Another contribution of the article is the extension of IQC theory.
doi_str_mv 10.1109/ACC.2009.5159825
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5159825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5159825</ieee_id><sourcerecordid>5159825</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cd472136c29d2fe0fc7f3048d5e196da18bd9463ebf79aaa571e07b8eed231373</originalsourceid><addsrcrecordid>eNpFkEtLAzEURuMLbKt7wU3-wNTcPCbJsgw-CgVRFNyVO5M7JTJOJUkL_fcWFFx9i8M5i4-xGxBzAOHvFk0zl0L4uQHjnTQnbApaaq2N1O6UTaSyrjKuhrN_oD7O2URYrSqowV-yac6fQoD3tZiw1xXlzLvtmCntscQ9cWzzdtgV4rlgG4dYDrxLsVCKyHc5jhu-HAttEg78ZYchHa2ON8dCSRjHkq_YRY9Dpuu_nbH3h_u35qlaPT8um8WqimBNqbqgrQRVd9IH2ZPoO9sroV0wBL4OCK4NXteK2t56RDQWSNjWEQWpQFk1Y7e_3UhE6-8UvzAd1n_HqB_BjFTI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Less conservative absolute stability criteria using Integral Quadratic Constraints</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Materassi, D. ; Salapaka, M.V.</creator><creatorcontrib>Materassi, D. ; Salapaka, M.V.</creatorcontrib><description>Lur'e systems, that are described by the feedback interconnection of a linear time invariant system and a nonlinear system, form an important class of nonlinear systems arising in many modern applications. A number of absolute stability criteria are available where the stability is guaranteed with the nonlinearity restricted to a pre-specified set. Most of these criteria provide sufficient conditions for absolute stability, thus lessening the conservativeness remains a challenge. A method of reducing conservativeness is to first estimate the part of the nonlinearity that is appropriate from an asymptotic sense followed by the application of a preferred absolute stability criteria to the more restricted nonlinearity. A comprehensive framework that incorporates the above approach is developed in this paper that employs a methodology based on integral quadratic constraints as a means of describing the nonlinearity. It is shown that the developed framework can be used to conclude absolute stability of Lur'e interconnections where all of the existing criteria fail to be satisfied. Indeed, examples are provided where the nonlinearity does not fall into the classes assumed by existing absolute criteria. Another contribution of the article is the extension of IQC theory.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5159825</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Atomic force microscopy ; Couplings ; Feedback ; Microelectromechanical systems ; Nonlinear systems ; Robust stability ; Stability criteria ; Sufficient conditions ; Time invariant systems</subject><ispartof>2009 American Control Conference, 2009, p.113-118</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5159825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5159825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Materassi, D.</creatorcontrib><creatorcontrib>Salapaka, M.V.</creatorcontrib><title>Less conservative absolute stability criteria using Integral Quadratic Constraints</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>Lur'e systems, that are described by the feedback interconnection of a linear time invariant system and a nonlinear system, form an important class of nonlinear systems arising in many modern applications. A number of absolute stability criteria are available where the stability is guaranteed with the nonlinearity restricted to a pre-specified set. Most of these criteria provide sufficient conditions for absolute stability, thus lessening the conservativeness remains a challenge. A method of reducing conservativeness is to first estimate the part of the nonlinearity that is appropriate from an asymptotic sense followed by the application of a preferred absolute stability criteria to the more restricted nonlinearity. A comprehensive framework that incorporates the above approach is developed in this paper that employs a methodology based on integral quadratic constraints as a means of describing the nonlinearity. It is shown that the developed framework can be used to conclude absolute stability of Lur'e interconnections where all of the existing criteria fail to be satisfied. Indeed, examples are provided where the nonlinearity does not fall into the classes assumed by existing absolute criteria. Another contribution of the article is the extension of IQC theory.</description><subject>Asymptotic stability</subject><subject>Atomic force microscopy</subject><subject>Couplings</subject><subject>Feedback</subject><subject>Microelectromechanical systems</subject><subject>Nonlinear systems</subject><subject>Robust stability</subject><subject>Stability criteria</subject><subject>Sufficient conditions</subject><subject>Time invariant systems</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtLAzEURuMLbKt7wU3-wNTcPCbJsgw-CgVRFNyVO5M7JTJOJUkL_fcWFFx9i8M5i4-xGxBzAOHvFk0zl0L4uQHjnTQnbApaaq2N1O6UTaSyrjKuhrN_oD7O2URYrSqowV-yac6fQoD3tZiw1xXlzLvtmCntscQ9cWzzdtgV4rlgG4dYDrxLsVCKyHc5jhu-HAttEg78ZYchHa2ON8dCSRjHkq_YRY9Dpuu_nbH3h_u35qlaPT8um8WqimBNqbqgrQRVd9IH2ZPoO9sroV0wBL4OCK4NXteK2t56RDQWSNjWEQWpQFk1Y7e_3UhE6-8UvzAd1n_HqB_BjFTI</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Materassi, D.</creator><creator>Salapaka, M.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Less conservative absolute stability criteria using Integral Quadratic Constraints</title><author>Materassi, D. ; Salapaka, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cd472136c29d2fe0fc7f3048d5e196da18bd9463ebf79aaa571e07b8eed231373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymptotic stability</topic><topic>Atomic force microscopy</topic><topic>Couplings</topic><topic>Feedback</topic><topic>Microelectromechanical systems</topic><topic>Nonlinear systems</topic><topic>Robust stability</topic><topic>Stability criteria</topic><topic>Sufficient conditions</topic><topic>Time invariant systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Materassi, D.</creatorcontrib><creatorcontrib>Salapaka, M.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Materassi, D.</au><au>Salapaka, M.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Less conservative absolute stability criteria using Integral Quadratic Constraints</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>113</spage><epage>118</epage><pages>113-118</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>Lur'e systems, that are described by the feedback interconnection of a linear time invariant system and a nonlinear system, form an important class of nonlinear systems arising in many modern applications. A number of absolute stability criteria are available where the stability is guaranteed with the nonlinearity restricted to a pre-specified set. Most of these criteria provide sufficient conditions for absolute stability, thus lessening the conservativeness remains a challenge. A method of reducing conservativeness is to first estimate the part of the nonlinearity that is appropriate from an asymptotic sense followed by the application of a preferred absolute stability criteria to the more restricted nonlinearity. A comprehensive framework that incorporates the above approach is developed in this paper that employs a methodology based on integral quadratic constraints as a means of describing the nonlinearity. It is shown that the developed framework can be used to conclude absolute stability of Lur'e interconnections where all of the existing criteria fail to be satisfied. Indeed, examples are provided where the nonlinearity does not fall into the classes assumed by existing absolute criteria. Another contribution of the article is the extension of IQC theory.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5159825</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2009 American Control Conference, 2009, p.113-118
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5159825
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
Atomic force microscopy
Couplings
Feedback
Microelectromechanical systems
Nonlinear systems
Robust stability
Stability criteria
Sufficient conditions
Time invariant systems
title Less conservative absolute stability criteria using Integral Quadratic Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Less%20conservative%20absolute%20stability%20criteria%20using%20Integral%20Quadratic%20Constraints&rft.btitle=2009%20American%20Control%20Conference&rft.au=Materassi,%20D.&rft.date=2009-06&rft.spage=113&rft.epage=118&rft.pages=113-118&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5159825&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&rft_dat=%3Cieee_6IE%3E5159825%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-cd472136c29d2fe0fc7f3048d5e196da18bd9463ebf79aaa571e07b8eed231373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5159825&rfr_iscdi=true