Loading…
Fast development of dense linear algebra codes on graphics processors
We present an application programming interface (API) for the C programming language that facilitates the development of dense linear algebra algorithms on graphics processors applying the FLAME methodology. The interface, built on top of the NVIDIA CUBLAS library, implements all the computational f...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an application programming interface (API) for the C programming language that facilitates the development of dense linear algebra algorithms on graphics processors applying the FLAME methodology. The interface, built on top of the NVIDIA CUBLAS library, implements all the computational functionality of the FLAME/C interface. In addition, the API includes data transference routines to explicitly handle communication between the CPU and GPU memory spaces. The flexibility and simplicity-of-use of this tool are illustrated using a complex operation of dense linear algebra: the Cholesky factorization. For this operation, we implement and evaluate all existing variants on an NVIDIA G80 processor, attaining speedups 7times compared with the CPU implementations. |
---|---|
ISSN: | 1530-2075 |
DOI: | 10.1109/IPDPS.2009.5160940 |