Loading…

Mining Bug Repositories--A Quality Assessment

The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In...

Full description

Saved in:
Bibliographic Details
Main Authors: Schugerl, P., Rilling, J., Charland, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1110
container_issue
container_start_page 1105
container_title
container_volume
creator Schugerl, P.
Rilling, J.
Charland, P.
description The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.
doi_str_mv 10.1109/CIMCA.2008.63
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5172780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5172780</ieee_id><sourcerecordid>5172780</sourcerecordid><originalsourceid>FETCH-LOGICAL-g235t-aa9798a8991db9569d0b094af968fc9a02b1f498858c80bccff9968b6272ba4f3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAdEUGqWrtzkBybeO--7jMFHoUUUXZeZdCaMtGnJpIv-vQVdncWBA4exe4QGEeixW667thEArjHyilVkHVhDWmpU4oZVpfwAAJKxiOqW8XUe8zjUT6eh_ozHQ8nzYcqxcN7WHye_y_O5bkuJpezjON-x6-R3JVb_XLDvl-ev7o2v3l-XXbvig5B65t6TJecdEW4DaUNbCEDKJzIu9eRBBEyKnNOudxD6PiW6qGCEFcGrJBfs4a-bY4yb45T3fjpvNFpxuZG_ccZANg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mining Bug Repositories--A Quality Assessment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schugerl, P. ; Rilling, J. ; Charland, P.</creator><creatorcontrib>Schugerl, P. ; Rilling, J. ; Charland, P.</creatorcontrib><description>The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.</description><identifier>ISBN: 9780769535142</identifier><identifier>ISBN: 0769535143</identifier><identifier>DOI: 10.1109/CIMCA.2008.63</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial intelligence ; Bug repositories ; Computer science ; Data mining ; Information retrieval ; Natural language processing ; ontologies ; Performance analysis ; Quality assessment ; Software engineering ; Text mining</subject><ispartof>2008 International Conference on Computational Intelligence for Modelling Control &amp; Automation, 2008, p.1105-1110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5172780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5172780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schugerl, P.</creatorcontrib><creatorcontrib>Rilling, J.</creatorcontrib><creatorcontrib>Charland, P.</creatorcontrib><title>Mining Bug Repositories--A Quality Assessment</title><title>2008 International Conference on Computational Intelligence for Modelling Control &amp; Automation</title><addtitle>CIMCA</addtitle><description>The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.</description><subject>Algorithm design and analysis</subject><subject>Artificial intelligence</subject><subject>Bug repositories</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Information retrieval</subject><subject>Natural language processing</subject><subject>ontologies</subject><subject>Performance analysis</subject><subject>Quality assessment</subject><subject>Software engineering</subject><subject>Text mining</subject><isbn>9780769535142</isbn><isbn>0769535143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQAdEUGqWrtzkBybeO--7jMFHoUUUXZeZdCaMtGnJpIv-vQVdncWBA4exe4QGEeixW667thEArjHyilVkHVhDWmpU4oZVpfwAAJKxiOqW8XUe8zjUT6eh_ozHQ8nzYcqxcN7WHye_y_O5bkuJpezjON-x6-R3JVb_XLDvl-ev7o2v3l-XXbvig5B65t6TJecdEW4DaUNbCEDKJzIu9eRBBEyKnNOudxD6PiW6qGCEFcGrJBfs4a-bY4yb45T3fjpvNFpxuZG_ccZANg</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Schugerl, P.</creator><creator>Rilling, J.</creator><creator>Charland, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Mining Bug Repositories--A Quality Assessment</title><author>Schugerl, P. ; Rilling, J. ; Charland, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g235t-aa9798a8991db9569d0b094af968fc9a02b1f498858c80bccff9968b6272ba4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial intelligence</topic><topic>Bug repositories</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Information retrieval</topic><topic>Natural language processing</topic><topic>ontologies</topic><topic>Performance analysis</topic><topic>Quality assessment</topic><topic>Software engineering</topic><topic>Text mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Schugerl, P.</creatorcontrib><creatorcontrib>Rilling, J.</creatorcontrib><creatorcontrib>Charland, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schugerl, P.</au><au>Rilling, J.</au><au>Charland, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mining Bug Repositories--A Quality Assessment</atitle><btitle>2008 International Conference on Computational Intelligence for Modelling Control &amp; Automation</btitle><stitle>CIMCA</stitle><date>2008-12</date><risdate>2008</risdate><spage>1105</spage><epage>1110</epage><pages>1105-1110</pages><isbn>9780769535142</isbn><isbn>0769535143</isbn><abstract>The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.</abstract><pub>IEEE</pub><doi>10.1109/CIMCA.2008.63</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769535142
ispartof 2008 International Conference on Computational Intelligence for Modelling Control & Automation, 2008, p.1105-1110
issn
language eng
recordid cdi_ieee_primary_5172780
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Artificial intelligence
Bug repositories
Computer science
Data mining
Information retrieval
Natural language processing
ontologies
Performance analysis
Quality assessment
Software engineering
Text mining
title Mining Bug Repositories--A Quality Assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mining%20Bug%20Repositories--A%20Quality%20Assessment&rft.btitle=2008%20International%20Conference%20on%20Computational%20Intelligence%20for%20Modelling%20Control%20&%20Automation&rft.au=Schugerl,%20P.&rft.date=2008-12&rft.spage=1105&rft.epage=1110&rft.pages=1105-1110&rft.isbn=9780769535142&rft.isbn_list=0769535143&rft_id=info:doi/10.1109/CIMCA.2008.63&rft_dat=%3Cieee_6IE%3E5172780%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g235t-aa9798a8991db9569d0b094af968fc9a02b1f498858c80bccff9968b6272ba4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5172780&rfr_iscdi=true