Loading…
Mining Bug Repositories--A Quality Assessment
The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1110 |
container_issue | |
container_start_page | 1105 |
container_title | |
container_volume | |
creator | Schugerl, P. Rilling, J. Charland, P. |
description | The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers. |
doi_str_mv | 10.1109/CIMCA.2008.63 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5172780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5172780</ieee_id><sourcerecordid>5172780</sourcerecordid><originalsourceid>FETCH-LOGICAL-g235t-aa9798a8991db9569d0b094af968fc9a02b1f498858c80bccff9968b6272ba4f3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAdEUGqWrtzkBybeO--7jMFHoUUUXZeZdCaMtGnJpIv-vQVdncWBA4exe4QGEeixW667thEArjHyilVkHVhDWmpU4oZVpfwAAJKxiOqW8XUe8zjUT6eh_ozHQ8nzYcqxcN7WHye_y_O5bkuJpezjON-x6-R3JVb_XLDvl-ev7o2v3l-XXbvig5B65t6TJecdEW4DaUNbCEDKJzIu9eRBBEyKnNOudxD6PiW6qGCEFcGrJBfs4a-bY4yb45T3fjpvNFpxuZG_ccZANg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mining Bug Repositories--A Quality Assessment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schugerl, P. ; Rilling, J. ; Charland, P.</creator><creatorcontrib>Schugerl, P. ; Rilling, J. ; Charland, P.</creatorcontrib><description>The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.</description><identifier>ISBN: 9780769535142</identifier><identifier>ISBN: 0769535143</identifier><identifier>DOI: 10.1109/CIMCA.2008.63</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial intelligence ; Bug repositories ; Computer science ; Data mining ; Information retrieval ; Natural language processing ; ontologies ; Performance analysis ; Quality assessment ; Software engineering ; Text mining</subject><ispartof>2008 International Conference on Computational Intelligence for Modelling Control & Automation, 2008, p.1105-1110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5172780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5172780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schugerl, P.</creatorcontrib><creatorcontrib>Rilling, J.</creatorcontrib><creatorcontrib>Charland, P.</creatorcontrib><title>Mining Bug Repositories--A Quality Assessment</title><title>2008 International Conference on Computational Intelligence for Modelling Control & Automation</title><addtitle>CIMCA</addtitle><description>The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.</description><subject>Algorithm design and analysis</subject><subject>Artificial intelligence</subject><subject>Bug repositories</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Information retrieval</subject><subject>Natural language processing</subject><subject>ontologies</subject><subject>Performance analysis</subject><subject>Quality assessment</subject><subject>Software engineering</subject><subject>Text mining</subject><isbn>9780769535142</isbn><isbn>0769535143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQAdEUGqWrtzkBybeO--7jMFHoUUUXZeZdCaMtGnJpIv-vQVdncWBA4exe4QGEeixW667thEArjHyilVkHVhDWmpU4oZVpfwAAJKxiOqW8XUe8zjUT6eh_ozHQ8nzYcqxcN7WHye_y_O5bkuJpezjON-x6-R3JVb_XLDvl-ev7o2v3l-XXbvig5B65t6TJecdEW4DaUNbCEDKJzIu9eRBBEyKnNOudxD6PiW6qGCEFcGrJBfs4a-bY4yb45T3fjpvNFpxuZG_ccZANg</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Schugerl, P.</creator><creator>Rilling, J.</creator><creator>Charland, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Mining Bug Repositories--A Quality Assessment</title><author>Schugerl, P. ; Rilling, J. ; Charland, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g235t-aa9798a8991db9569d0b094af968fc9a02b1f498858c80bccff9968b6272ba4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial intelligence</topic><topic>Bug repositories</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Information retrieval</topic><topic>Natural language processing</topic><topic>ontologies</topic><topic>Performance analysis</topic><topic>Quality assessment</topic><topic>Software engineering</topic><topic>Text mining</topic><toplevel>online_resources</toplevel><creatorcontrib>Schugerl, P.</creatorcontrib><creatorcontrib>Rilling, J.</creatorcontrib><creatorcontrib>Charland, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schugerl, P.</au><au>Rilling, J.</au><au>Charland, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mining Bug Repositories--A Quality Assessment</atitle><btitle>2008 International Conference on Computational Intelligence for Modelling Control & Automation</btitle><stitle>CIMCA</stitle><date>2008-12</date><risdate>2008</risdate><spage>1105</spage><epage>1110</epage><pages>1105-1110</pages><isbn>9780769535142</isbn><isbn>0769535143</isbn><abstract>The process of evaluating, classifying, and assigning bugs to programmers is a difficult and time consuming task which greatly depends on the quality of the bug report itself. It has been shown that the quality of reports originating from bug trackers or ticketing systems can vary significantly. In this research, we apply information retrieval (IR) and natural language processing (NLP) techniques for mining bug repositories. We focus particularly on measuring the quality of the free form descriptions submitted as part of bug reports used by open source bug trackers. Properties of natural language influencing the report quality are automatically identified and applied as part of a classification task. The results from the automated quality assessment are used to populate and enrich our existing software engineering ontology to support a further analysis of the quality and maturity of bug trackers.</abstract><pub>IEEE</pub><doi>10.1109/CIMCA.2008.63</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769535142 |
ispartof | 2008 International Conference on Computational Intelligence for Modelling Control & Automation, 2008, p.1105-1110 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5172780 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Artificial intelligence Bug repositories Computer science Data mining Information retrieval Natural language processing ontologies Performance analysis Quality assessment Software engineering Text mining |
title | Mining Bug Repositories--A Quality Assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mining%20Bug%20Repositories--A%20Quality%20Assessment&rft.btitle=2008%20International%20Conference%20on%20Computational%20Intelligence%20for%20Modelling%20Control%20&%20Automation&rft.au=Schugerl,%20P.&rft.date=2008-12&rft.spage=1105&rft.epage=1110&rft.pages=1105-1110&rft.isbn=9780769535142&rft.isbn_list=0769535143&rft_id=info:doi/10.1109/CIMCA.2008.63&rft_dat=%3Cieee_6IE%3E5172780%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g235t-aa9798a8991db9569d0b094af968fc9a02b1f498858c80bccff9968b6272ba4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5172780&rfr_iscdi=true |