Loading…
RDF Data-Centric Storage
The vision of the semantic Web has brought about new challenges at the intersection of Web research and data management. One fundamental research issue at this intersection is the storage of the resource description framework (RDF) data: the model at the core of the semantic Web. We present a data-c...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-25a96050bb353477ec46e0870d32e7d7b578fd58e49bd05d4aa4834f2e2b15653 |
---|---|
cites | |
container_end_page | 918 |
container_issue | |
container_start_page | 911 |
container_title | |
container_volume | |
creator | Levandoski, J.J. Mokbel, M.F. |
description | The vision of the semantic Web has brought about new challenges at the intersection of Web research and data management. One fundamental research issue at this intersection is the storage of the resource description framework (RDF) data: the model at the core of the semantic Web. We present a data-centric approach for storage of RDF in relational databases. The intuition behind our approach is that each RDF dataset requires a tailored table schema that achieves efficient query processing by (1) reducing the need for joins in the query plan and (2) keeping null storage below a given threshold. Using a basic structure derived from the RDF data, we propose a two-phase algorithm involving clustering and partitioning. The clustering phase aims to reduce the need for joins in a query. The partitioning phase aims to optimize storage of extra (i.e., null) data in the underlying relational database. Our approach does not assume a particular query workload, relevant for RDF knowledge bases with a large number of ad-hoc queries. Extensive experimental evidence using three publicly available real-world RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our schema creation technique provides superior query processing performance compared to state-of-the art storage approaches. Further, our approach is easily implemented, and complements existing RDF-specific databases. |
doi_str_mv | 10.1109/ICWS.2009.49 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5175913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5175913</ieee_id><sourcerecordid>5175913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-25a96050bb353477ec46e0870d32e7d7b578fd58e49bd05d4aa4834f2e2b15653</originalsourceid><addsrcrecordid>eNotzEtrwkAQAOAFKWjVWw-FXvwDSWcfs5M5llitIAg-0JvsZiclYh8kufTfe7Cn7_Yp9aQh1xr4dVUed7kB4NzxQD0CeUZLwKehmnbdBQA0e0KgkXrezhezeehDVsp33zbVbNf_tOFTJuqhDtdOpv-O1WHxvi8_svVmuSrf1lll0PeZwcAeEGK0aB2RVM4LFATJGqFEEamoExbiOCbA5EJwhXW1ERM1erRj9XJ_GxE5_7bNV2j_zqgJWVt7A1TPNnU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RDF Data-Centric Storage</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Levandoski, J.J. ; Mokbel, M.F.</creator><creatorcontrib>Levandoski, J.J. ; Mokbel, M.F.</creatorcontrib><description>The vision of the semantic Web has brought about new challenges at the intersection of Web research and data management. One fundamental research issue at this intersection is the storage of the resource description framework (RDF) data: the model at the core of the semantic Web. We present a data-centric approach for storage of RDF in relational databases. The intuition behind our approach is that each RDF dataset requires a tailored table schema that achieves efficient query processing by (1) reducing the need for joins in the query plan and (2) keeping null storage below a given threshold. Using a basic structure derived from the RDF data, we propose a two-phase algorithm involving clustering and partitioning. The clustering phase aims to reduce the need for joins in a query. The partitioning phase aims to optimize storage of extra (i.e., null) data in the underlying relational database. Our approach does not assume a particular query workload, relevant for RDF knowledge bases with a large number of ad-hoc queries. Extensive experimental evidence using three publicly available real-world RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our schema creation technique provides superior query processing performance compared to state-of-the art storage approaches. Further, our approach is easily implemented, and complements existing RDF-specific databases.</description><identifier>ISBN: 076953709X</identifier><identifier>ISBN: 9780769537092</identifier><identifier>DOI: 10.1109/ICWS.2009.49</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Conference management ; Data engineering ; Data models ; Engineering management ; Query processing ; Relational databases ; Resource description framework ; Semantic Web ; Web services</subject><ispartof>2009 IEEE International Conference on Web Services, 2009, p.911-918</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-25a96050bb353477ec46e0870d32e7d7b578fd58e49bd05d4aa4834f2e2b15653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5175913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5175913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Levandoski, J.J.</creatorcontrib><creatorcontrib>Mokbel, M.F.</creatorcontrib><title>RDF Data-Centric Storage</title><title>2009 IEEE International Conference on Web Services</title><addtitle>ICWS</addtitle><description>The vision of the semantic Web has brought about new challenges at the intersection of Web research and data management. One fundamental research issue at this intersection is the storage of the resource description framework (RDF) data: the model at the core of the semantic Web. We present a data-centric approach for storage of RDF in relational databases. The intuition behind our approach is that each RDF dataset requires a tailored table schema that achieves efficient query processing by (1) reducing the need for joins in the query plan and (2) keeping null storage below a given threshold. Using a basic structure derived from the RDF data, we propose a two-phase algorithm involving clustering and partitioning. The clustering phase aims to reduce the need for joins in a query. The partitioning phase aims to optimize storage of extra (i.e., null) data in the underlying relational database. Our approach does not assume a particular query workload, relevant for RDF knowledge bases with a large number of ad-hoc queries. Extensive experimental evidence using three publicly available real-world RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our schema creation technique provides superior query processing performance compared to state-of-the art storage approaches. Further, our approach is easily implemented, and complements existing RDF-specific databases.</description><subject>Computer science</subject><subject>Conference management</subject><subject>Data engineering</subject><subject>Data models</subject><subject>Engineering management</subject><subject>Query processing</subject><subject>Relational databases</subject><subject>Resource description framework</subject><subject>Semantic Web</subject><subject>Web services</subject><isbn>076953709X</isbn><isbn>9780769537092</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzEtrwkAQAOAFKWjVWw-FXvwDSWcfs5M5llitIAg-0JvsZiclYh8kufTfe7Cn7_Yp9aQh1xr4dVUed7kB4NzxQD0CeUZLwKehmnbdBQA0e0KgkXrezhezeehDVsp33zbVbNf_tOFTJuqhDtdOpv-O1WHxvi8_svVmuSrf1lll0PeZwcAeEGK0aB2RVM4LFATJGqFEEamoExbiOCbA5EJwhXW1ERM1erRj9XJ_GxE5_7bNV2j_zqgJWVt7A1TPNnU</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Levandoski, J.J.</creator><creator>Mokbel, M.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090101</creationdate><title>RDF Data-Centric Storage</title><author>Levandoski, J.J. ; Mokbel, M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-25a96050bb353477ec46e0870d32e7d7b578fd58e49bd05d4aa4834f2e2b15653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer science</topic><topic>Conference management</topic><topic>Data engineering</topic><topic>Data models</topic><topic>Engineering management</topic><topic>Query processing</topic><topic>Relational databases</topic><topic>Resource description framework</topic><topic>Semantic Web</topic><topic>Web services</topic><toplevel>online_resources</toplevel><creatorcontrib>Levandoski, J.J.</creatorcontrib><creatorcontrib>Mokbel, M.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Levandoski, J.J.</au><au>Mokbel, M.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RDF Data-Centric Storage</atitle><btitle>2009 IEEE International Conference on Web Services</btitle><stitle>ICWS</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>911</spage><epage>918</epage><pages>911-918</pages><isbn>076953709X</isbn><isbn>9780769537092</isbn><abstract>The vision of the semantic Web has brought about new challenges at the intersection of Web research and data management. One fundamental research issue at this intersection is the storage of the resource description framework (RDF) data: the model at the core of the semantic Web. We present a data-centric approach for storage of RDF in relational databases. The intuition behind our approach is that each RDF dataset requires a tailored table schema that achieves efficient query processing by (1) reducing the need for joins in the query plan and (2) keeping null storage below a given threshold. Using a basic structure derived from the RDF data, we propose a two-phase algorithm involving clustering and partitioning. The clustering phase aims to reduce the need for joins in a query. The partitioning phase aims to optimize storage of extra (i.e., null) data in the underlying relational database. Our approach does not assume a particular query workload, relevant for RDF knowledge bases with a large number of ad-hoc queries. Extensive experimental evidence using three publicly available real-world RDF data sets (i.e., DBLP, DBPedia, and Uniprot) shows that our schema creation technique provides superior query processing performance compared to state-of-the art storage approaches. Further, our approach is easily implemented, and complements existing RDF-specific databases.</abstract><pub>IEEE</pub><doi>10.1109/ICWS.2009.49</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 076953709X |
ispartof | 2009 IEEE International Conference on Web Services, 2009, p.911-918 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5175913 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer science Conference management Data engineering Data models Engineering management Query processing Relational databases Resource description framework Semantic Web Web services |
title | RDF Data-Centric Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RDF%20Data-Centric%20Storage&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Web%20Services&rft.au=Levandoski,%20J.J.&rft.date=2009-01-01&rft.spage=911&rft.epage=918&rft.pages=911-918&rft.isbn=076953709X&rft.isbn_list=9780769537092&rft_id=info:doi/10.1109/ICWS.2009.49&rft_dat=%3Cieee_6IE%3E5175913%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-25a96050bb353477ec46e0870d32e7d7b578fd58e49bd05d4aa4834f2e2b15653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5175913&rfr_iscdi=true |