Loading…

A Performance of Centrality Calculation in Social Networks

To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the impor...

Full description

Saved in:
Bibliographic Details
Main Authors: Brodka, P., Musial, K., Kazienko, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 31
container_issue
container_start_page 24
container_title
container_volume
creator Brodka, P.
Musial, K.
Kazienko, P.
description To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.
doi_str_mv 10.1109/CASoN.2009.20
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5176098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5176098</ieee_id><sourcerecordid>5176098</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-e94587b0b1e743dd7f912f1b9fd7e18117c65a24ba043ab7ea0650937cb2cc073</originalsourceid><addsrcrecordid>eNotjE1LAzEUAAMiqLVHT17yB7a-l4_NxtuyqBVKFarnkmRfILrdSHZF-u8t6BxmbsPYDcIKEexd1-7ydiUA7Eln7AqVUErVKO0FW07TB5xQWhhrL9l9y1-pxFwObgzEc-QdjXNxQ5qPvHND-B7cnPLI08h3OSQ38C3NP7l8TtfsPLphouV_F-z98eGtW1ebl6fnrt1USaCaK7JKN8aDRzJK9r2JFkVEb2NvCBtEE2rthPIOlHTekINag5UmeBECGLlgt3_fRET7r5IOrhz3Gk0NtpG_CA1EZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Performance of Centrality Calculation in Social Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brodka, P. ; Musial, K. ; Kazienko, P.</creator><creatorcontrib>Brodka, P. ; Musial, K. ; Kazienko, P.</creatorcontrib><description>To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.</description><identifier>ISBN: 1424446139</identifier><identifier>ISBN: 9781424446131</identifier><identifier>ISBN: 9780769537405</identifier><identifier>ISBN: 0769537405</identifier><identifier>DOI: 10.1109/CASoN.2009.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>algorithm efficiency ; Approximation algorithms ; centrality ; Communities ; Complex networks ; Data mining ; Equations ; node position ; PIN algorithm ; Probability density function ; social network analysis ; Social network services ; social networks</subject><ispartof>2009 International Conference on Computational Aspects of Social Networks, 2009, p.24-31</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5176098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5176098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brodka, P.</creatorcontrib><creatorcontrib>Musial, K.</creatorcontrib><creatorcontrib>Kazienko, P.</creatorcontrib><title>A Performance of Centrality Calculation in Social Networks</title><title>2009 International Conference on Computational Aspects of Social Networks</title><addtitle>CASON</addtitle><description>To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.</description><subject>algorithm efficiency</subject><subject>Approximation algorithms</subject><subject>centrality</subject><subject>Communities</subject><subject>Complex networks</subject><subject>Data mining</subject><subject>Equations</subject><subject>node position</subject><subject>PIN algorithm</subject><subject>Probability density function</subject><subject>social network analysis</subject><subject>Social network services</subject><subject>social networks</subject><isbn>1424446139</isbn><isbn>9781424446131</isbn><isbn>9780769537405</isbn><isbn>0769537405</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LAzEUAAMiqLVHT17yB7a-l4_NxtuyqBVKFarnkmRfILrdSHZF-u8t6BxmbsPYDcIKEexd1-7ydiUA7Eln7AqVUErVKO0FW07TB5xQWhhrL9l9y1-pxFwObgzEc-QdjXNxQ5qPvHND-B7cnPLI08h3OSQ38C3NP7l8TtfsPLphouV_F-z98eGtW1ebl6fnrt1USaCaK7JKN8aDRzJK9r2JFkVEb2NvCBtEE2rthPIOlHTekINag5UmeBECGLlgt3_fRET7r5IOrhz3Gk0NtpG_CA1EZA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Brodka, P.</creator><creator>Musial, K.</creator><creator>Kazienko, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090101</creationdate><title>A Performance of Centrality Calculation in Social Networks</title><author>Brodka, P. ; Musial, K. ; Kazienko, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-e94587b0b1e743dd7f912f1b9fd7e18117c65a24ba043ab7ea0650937cb2cc073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>algorithm efficiency</topic><topic>Approximation algorithms</topic><topic>centrality</topic><topic>Communities</topic><topic>Complex networks</topic><topic>Data mining</topic><topic>Equations</topic><topic>node position</topic><topic>PIN algorithm</topic><topic>Probability density function</topic><topic>social network analysis</topic><topic>Social network services</topic><topic>social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Brodka, P.</creatorcontrib><creatorcontrib>Musial, K.</creatorcontrib><creatorcontrib>Kazienko, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brodka, P.</au><au>Musial, K.</au><au>Kazienko, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Performance of Centrality Calculation in Social Networks</atitle><btitle>2009 International Conference on Computational Aspects of Social Networks</btitle><stitle>CASON</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>24</spage><epage>31</epage><pages>24-31</pages><isbn>1424446139</isbn><isbn>9781424446131</isbn><isbn>9780769537405</isbn><isbn>0769537405</isbn><abstract>To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.</abstract><pub>IEEE</pub><doi>10.1109/CASoN.2009.20</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424446139
ispartof 2009 International Conference on Computational Aspects of Social Networks, 2009, p.24-31
issn
language eng
recordid cdi_ieee_primary_5176098
source IEEE Electronic Library (IEL) Conference Proceedings
subjects algorithm efficiency
Approximation algorithms
centrality
Communities
Complex networks
Data mining
Equations
node position
PIN algorithm
Probability density function
social network analysis
Social network services
social networks
title A Performance of Centrality Calculation in Social Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Performance%20of%20Centrality%20Calculation%20in%20Social%20Networks&rft.btitle=2009%20International%20Conference%20on%20Computational%20Aspects%20of%20Social%20Networks&rft.au=Brodka,%20P.&rft.date=2009-01-01&rft.spage=24&rft.epage=31&rft.pages=24-31&rft.isbn=1424446139&rft.isbn_list=9781424446131&rft.isbn_list=9780769537405&rft.isbn_list=0769537405&rft_id=info:doi/10.1109/CASoN.2009.20&rft_dat=%3Cieee_6IE%3E5176098%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i214t-e94587b0b1e743dd7f912f1b9fd7e18117c65a24ba043ab7ea0650937cb2cc073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5176098&rfr_iscdi=true