Loading…
A Performance of Centrality Calculation in Social Networks
To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the impor...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 31 |
container_issue | |
container_start_page | 24 |
container_title | |
container_volume | |
creator | Brodka, P. Musial, K. Kazienko, P. |
description | To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others. |
doi_str_mv | 10.1109/CASoN.2009.20 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5176098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5176098</ieee_id><sourcerecordid>5176098</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-e94587b0b1e743dd7f912f1b9fd7e18117c65a24ba043ab7ea0650937cb2cc073</originalsourceid><addsrcrecordid>eNotjE1LAzEUAAMiqLVHT17yB7a-l4_NxtuyqBVKFarnkmRfILrdSHZF-u8t6BxmbsPYDcIKEexd1-7ydiUA7Eln7AqVUErVKO0FW07TB5xQWhhrL9l9y1-pxFwObgzEc-QdjXNxQ5qPvHND-B7cnPLI08h3OSQ38C3NP7l8TtfsPLphouV_F-z98eGtW1ebl6fnrt1USaCaK7JKN8aDRzJK9r2JFkVEb2NvCBtEE2rthPIOlHTekINag5UmeBECGLlgt3_fRET7r5IOrhz3Gk0NtpG_CA1EZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Performance of Centrality Calculation in Social Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brodka, P. ; Musial, K. ; Kazienko, P.</creator><creatorcontrib>Brodka, P. ; Musial, K. ; Kazienko, P.</creatorcontrib><description>To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.</description><identifier>ISBN: 1424446139</identifier><identifier>ISBN: 9781424446131</identifier><identifier>ISBN: 9780769537405</identifier><identifier>ISBN: 0769537405</identifier><identifier>DOI: 10.1109/CASoN.2009.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>algorithm efficiency ; Approximation algorithms ; centrality ; Communities ; Complex networks ; Data mining ; Equations ; node position ; PIN algorithm ; Probability density function ; social network analysis ; Social network services ; social networks</subject><ispartof>2009 International Conference on Computational Aspects of Social Networks, 2009, p.24-31</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5176098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5176098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brodka, P.</creatorcontrib><creatorcontrib>Musial, K.</creatorcontrib><creatorcontrib>Kazienko, P.</creatorcontrib><title>A Performance of Centrality Calculation in Social Networks</title><title>2009 International Conference on Computational Aspects of Social Networks</title><addtitle>CASON</addtitle><description>To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.</description><subject>algorithm efficiency</subject><subject>Approximation algorithms</subject><subject>centrality</subject><subject>Communities</subject><subject>Complex networks</subject><subject>Data mining</subject><subject>Equations</subject><subject>node position</subject><subject>PIN algorithm</subject><subject>Probability density function</subject><subject>social network analysis</subject><subject>Social network services</subject><subject>social networks</subject><isbn>1424446139</isbn><isbn>9781424446131</isbn><isbn>9780769537405</isbn><isbn>0769537405</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LAzEUAAMiqLVHT17yB7a-l4_NxtuyqBVKFarnkmRfILrdSHZF-u8t6BxmbsPYDcIKEexd1-7ydiUA7Eln7AqVUErVKO0FW07TB5xQWhhrL9l9y1-pxFwObgzEc-QdjXNxQ5qPvHND-B7cnPLI08h3OSQ38C3NP7l8TtfsPLphouV_F-z98eGtW1ebl6fnrt1USaCaK7JKN8aDRzJK9r2JFkVEb2NvCBtEE2rthPIOlHTekINag5UmeBECGLlgt3_fRET7r5IOrhz3Gk0NtpG_CA1EZA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Brodka, P.</creator><creator>Musial, K.</creator><creator>Kazienko, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090101</creationdate><title>A Performance of Centrality Calculation in Social Networks</title><author>Brodka, P. ; Musial, K. ; Kazienko, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-e94587b0b1e743dd7f912f1b9fd7e18117c65a24ba043ab7ea0650937cb2cc073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>algorithm efficiency</topic><topic>Approximation algorithms</topic><topic>centrality</topic><topic>Communities</topic><topic>Complex networks</topic><topic>Data mining</topic><topic>Equations</topic><topic>node position</topic><topic>PIN algorithm</topic><topic>Probability density function</topic><topic>social network analysis</topic><topic>Social network services</topic><topic>social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Brodka, P.</creatorcontrib><creatorcontrib>Musial, K.</creatorcontrib><creatorcontrib>Kazienko, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brodka, P.</au><au>Musial, K.</au><au>Kazienko, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Performance of Centrality Calculation in Social Networks</atitle><btitle>2009 International Conference on Computational Aspects of Social Networks</btitle><stitle>CASON</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>24</spage><epage>31</epage><pages>24-31</pages><isbn>1424446139</isbn><isbn>9781424446131</isbn><isbn>9780769537405</isbn><isbn>0769537405</isbn><abstract>To analyze large social networks a lot of effort and resources are usually required. Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network characteristics. One of them is node position, which can be used to assess the importance of a given node within either the whole social network or the smaller subgroup. Three algorithms that can be utilized in the process of node position evaluation are presented in the paper: PIN edges, PIN nodes, and PIN hybrid. Also, different algorithms for indegree and outdegree prestige measures have been developed and tested. According to the experiments performed, the algorithms based on processing of edges are always faster than the others.</abstract><pub>IEEE</pub><doi>10.1109/CASoN.2009.20</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424446139 |
ispartof | 2009 International Conference on Computational Aspects of Social Networks, 2009, p.24-31 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5176098 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | algorithm efficiency Approximation algorithms centrality Communities Complex networks Data mining Equations node position PIN algorithm Probability density function social network analysis Social network services social networks |
title | A Performance of Centrality Calculation in Social Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Performance%20of%20Centrality%20Calculation%20in%20Social%20Networks&rft.btitle=2009%20International%20Conference%20on%20Computational%20Aspects%20of%20Social%20Networks&rft.au=Brodka,%20P.&rft.date=2009-01-01&rft.spage=24&rft.epage=31&rft.pages=24-31&rft.isbn=1424446139&rft.isbn_list=9781424446131&rft.isbn_list=9780769537405&rft.isbn_list=0769537405&rft_id=info:doi/10.1109/CASoN.2009.20&rft_dat=%3Cieee_6IE%3E5176098%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i214t-e94587b0b1e743dd7f912f1b9fd7e18117c65a24ba043ab7ea0650937cb2cc073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5176098&rfr_iscdi=true |