Loading…
Bivariate Generalized Linear Model for Interval-Valued Variables
Current symbolic regression methods visualize problems from an optimization point of view and do not consider the probabilistic aspects related to regression models. In this paper, we present the bivariate generalized linear model (BGLM) proposed by Iwasaki and Tsubaki [5] in the context of interval...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current symbolic regression methods visualize problems from an optimization point of view and do not consider the probabilistic aspects related to regression models. In this paper, we present the bivariate generalized linear model (BGLM) proposed by Iwasaki and Tsubaki [5] in the context of interval-valued data sets. Important aspects related to the BGLM that remain open or can be improved will be considered. The performance of this new approach in relation to symbolic regression methods proposed by Billard and Diday [1] and Lima Neto and De Carvalho [7] will be considered through real interval data sets. |
---|---|
ISSN: | 2161-4393 2161-4407 |
DOI: | 10.1109/IJCNN.2009.5178711 |