Loading…

Nonlinear system identification based on adaptive competitive clustering and OLS

In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cl...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Wan-jun, Qiao Yan-hui, Qiang Wen-yi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1183
container_issue
container_start_page 1178
container_title
container_volume
creator Hao Wan-jun
Qiao Yan-hui
Qiang Wen-yi
description In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.
doi_str_mv 10.1109/CCDC.2009.5192007
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192007</ieee_id><sourcerecordid>5192007</sourcerecordid><originalsourceid>FETCH-ieee_primary_51920073</originalsourceid><addsrcrecordid>eNp9j81Kw0AURq8_BVvbBxA38wKNdybTJHedtrgQFXRfxua23JJMQmYU-vYNWIRuXJ0PDmfxATxoTLRGeirLZZkYREoWmgbmVzCjvNDWWGtyk9I1jDXZYk7W5jcXzpjbP5fSCCZDXhBmqLM7mIRwQMyyFHEM76-tr8Wz61U4hsiNkop9lJ1sXZTWqy8XuFLDcJXrovyw2rZNx1F-d_09RL34vXK-Um8vH1MY7VwdeHbmPTyuV5_l81yYedP10rj-uDk_Sv-3J2GpR68</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear system identification based on adaptive competitive clustering and OLS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Wan-jun ; Qiao Yan-hui ; Qiang Wen-yi</creator><creatorcontrib>Hao Wan-jun ; Qiao Yan-hui ; Qiang Wen-yi</creatorcontrib><description>In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424427222</identifier><identifier>ISBN: 1424427223</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424427239</identifier><identifier>EISBN: 1424427231</identifier><identifier>DOI: 10.1109/CCDC.2009.5192007</identifier><identifier>LCCN: 2008906016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Competitive Clustering ; Clustering algorithms ; Convergence ; Educational institutions ; Electronic mail ; Fuzzy Modeling ; Least squares methods ; Nonlinear systems ; OLS ; Space technology ; Takagi-Sugeno model</subject><ispartof>2009 Chinese Control and Decision Conference, 2009, p.1178-1183</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Wan-jun</creatorcontrib><creatorcontrib>Qiao Yan-hui</creatorcontrib><creatorcontrib>Qiang Wen-yi</creatorcontrib><title>Nonlinear system identification based on adaptive competitive clustering and OLS</title><title>2009 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.</description><subject>Adaptive Competitive Clustering</subject><subject>Clustering algorithms</subject><subject>Convergence</subject><subject>Educational institutions</subject><subject>Electronic mail</subject><subject>Fuzzy Modeling</subject><subject>Least squares methods</subject><subject>Nonlinear systems</subject><subject>OLS</subject><subject>Space technology</subject><subject>Takagi-Sugeno model</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424427222</isbn><isbn>1424427223</isbn><isbn>9781424427239</isbn><isbn>1424427231</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j81Kw0AURq8_BVvbBxA38wKNdybTJHedtrgQFXRfxua23JJMQmYU-vYNWIRuXJ0PDmfxATxoTLRGeirLZZkYREoWmgbmVzCjvNDWWGtyk9I1jDXZYk7W5jcXzpjbP5fSCCZDXhBmqLM7mIRwQMyyFHEM76-tr8Wz61U4hsiNkop9lJ1sXZTWqy8XuFLDcJXrovyw2rZNx1F-d_09RL34vXK-Um8vH1MY7VwdeHbmPTyuV5_l81yYedP10rj-uDk_Sv-3J2GpR68</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hao Wan-jun</creator><creator>Qiao Yan-hui</creator><creator>Qiang Wen-yi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Nonlinear system identification based on adaptive competitive clustering and OLS</title><author>Hao Wan-jun ; Qiao Yan-hui ; Qiang Wen-yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_51920073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive Competitive Clustering</topic><topic>Clustering algorithms</topic><topic>Convergence</topic><topic>Educational institutions</topic><topic>Electronic mail</topic><topic>Fuzzy Modeling</topic><topic>Least squares methods</topic><topic>Nonlinear systems</topic><topic>OLS</topic><topic>Space technology</topic><topic>Takagi-Sugeno model</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Wan-jun</creatorcontrib><creatorcontrib>Qiao Yan-hui</creatorcontrib><creatorcontrib>Qiang Wen-yi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Wan-jun</au><au>Qiao Yan-hui</au><au>Qiang Wen-yi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear system identification based on adaptive competitive clustering and OLS</atitle><btitle>2009 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1178</spage><epage>1183</epage><pages>1178-1183</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424427222</isbn><isbn>1424427223</isbn><eisbn>9781424427239</eisbn><eisbn>1424427231</eisbn><abstract>In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2009.5192007</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2009 Chinese Control and Decision Conference, 2009, p.1178-1183
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5192007
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Competitive Clustering
Clustering algorithms
Convergence
Educational institutions
Electronic mail
Fuzzy Modeling
Least squares methods
Nonlinear systems
OLS
Space technology
Takagi-Sugeno model
title Nonlinear system identification based on adaptive competitive clustering and OLS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20system%20identification%20based%20on%20adaptive%20competitive%20clustering%20and%20OLS&rft.btitle=2009%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Hao%20Wan-jun&rft.date=2009-06&rft.spage=1178&rft.epage=1183&rft.pages=1178-1183&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424427222&rft.isbn_list=1424427223&rft_id=info:doi/10.1109/CCDC.2009.5192007&rft.eisbn=9781424427239&rft.eisbn_list=1424427231&rft_dat=%3Cieee_6IE%3E5192007%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_51920073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192007&rfr_iscdi=true