Loading…
Nonlinear system identification based on adaptive competitive clustering and OLS
In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cl...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1183 |
container_issue | |
container_start_page | 1178 |
container_title | |
container_volume | |
creator | Hao Wan-jun Qiao Yan-hui Qiang Wen-yi |
description | In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved. |
doi_str_mv | 10.1109/CCDC.2009.5192007 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192007</ieee_id><sourcerecordid>5192007</sourcerecordid><originalsourceid>FETCH-ieee_primary_51920073</originalsourceid><addsrcrecordid>eNp9j81Kw0AURq8_BVvbBxA38wKNdybTJHedtrgQFXRfxua23JJMQmYU-vYNWIRuXJ0PDmfxATxoTLRGeirLZZkYREoWmgbmVzCjvNDWWGtyk9I1jDXZYk7W5jcXzpjbP5fSCCZDXhBmqLM7mIRwQMyyFHEM76-tr8Wz61U4hsiNkop9lJ1sXZTWqy8XuFLDcJXrovyw2rZNx1F-d_09RL34vXK-Um8vH1MY7VwdeHbmPTyuV5_l81yYedP10rj-uDk_Sv-3J2GpR68</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear system identification based on adaptive competitive clustering and OLS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Wan-jun ; Qiao Yan-hui ; Qiang Wen-yi</creator><creatorcontrib>Hao Wan-jun ; Qiao Yan-hui ; Qiang Wen-yi</creatorcontrib><description>In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424427222</identifier><identifier>ISBN: 1424427223</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424427239</identifier><identifier>EISBN: 1424427231</identifier><identifier>DOI: 10.1109/CCDC.2009.5192007</identifier><identifier>LCCN: 2008906016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Competitive Clustering ; Clustering algorithms ; Convergence ; Educational institutions ; Electronic mail ; Fuzzy Modeling ; Least squares methods ; Nonlinear systems ; OLS ; Space technology ; Takagi-Sugeno model</subject><ispartof>2009 Chinese Control and Decision Conference, 2009, p.1178-1183</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Wan-jun</creatorcontrib><creatorcontrib>Qiao Yan-hui</creatorcontrib><creatorcontrib>Qiang Wen-yi</creatorcontrib><title>Nonlinear system identification based on adaptive competitive clustering and OLS</title><title>2009 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.</description><subject>Adaptive Competitive Clustering</subject><subject>Clustering algorithms</subject><subject>Convergence</subject><subject>Educational institutions</subject><subject>Electronic mail</subject><subject>Fuzzy Modeling</subject><subject>Least squares methods</subject><subject>Nonlinear systems</subject><subject>OLS</subject><subject>Space technology</subject><subject>Takagi-Sugeno model</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424427222</isbn><isbn>1424427223</isbn><isbn>9781424427239</isbn><isbn>1424427231</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j81Kw0AURq8_BVvbBxA38wKNdybTJHedtrgQFXRfxua23JJMQmYU-vYNWIRuXJ0PDmfxATxoTLRGeirLZZkYREoWmgbmVzCjvNDWWGtyk9I1jDXZYk7W5jcXzpjbP5fSCCZDXhBmqLM7mIRwQMyyFHEM76-tr8Wz61U4hsiNkop9lJ1sXZTWqy8XuFLDcJXrovyw2rZNx1F-d_09RL34vXK-Um8vH1MY7VwdeHbmPTyuV5_l81yYedP10rj-uDk_Sv-3J2GpR68</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hao Wan-jun</creator><creator>Qiao Yan-hui</creator><creator>Qiang Wen-yi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Nonlinear system identification based on adaptive competitive clustering and OLS</title><author>Hao Wan-jun ; Qiao Yan-hui ; Qiang Wen-yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_51920073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive Competitive Clustering</topic><topic>Clustering algorithms</topic><topic>Convergence</topic><topic>Educational institutions</topic><topic>Electronic mail</topic><topic>Fuzzy Modeling</topic><topic>Least squares methods</topic><topic>Nonlinear systems</topic><topic>OLS</topic><topic>Space technology</topic><topic>Takagi-Sugeno model</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Wan-jun</creatorcontrib><creatorcontrib>Qiao Yan-hui</creatorcontrib><creatorcontrib>Qiang Wen-yi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Wan-jun</au><au>Qiao Yan-hui</au><au>Qiang Wen-yi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear system identification based on adaptive competitive clustering and OLS</atitle><btitle>2009 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1178</spage><epage>1183</epage><pages>1178-1183</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424427222</isbn><isbn>1424427223</isbn><eisbn>9781424427239</eisbn><eisbn>1424427231</eisbn><abstract>In this paper, a new identification method for nonlinear system model from input-output data is presented. In accordance with the problem that sensitivity to initialization and noise, and some relative parameters must be determined beforehand during the fuzzy clustering process in the usual fuzzy cluster algorithm, and the existing competitive clustering algorithm have poor convergence properties, and make convergence to a local minimum more likely. A type of adaptive competitive cluster algorithm for structure identification is presented. At the same time, orthogonal least squares (OLS) method algorithm is used to remove redundant fuzzy rules and identify model parameters during the clustering process. Through simulation research, the effectiveness of the method is proved.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2009.5192007</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2009 Chinese Control and Decision Conference, 2009, p.1178-1183 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_5192007 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive Competitive Clustering Clustering algorithms Convergence Educational institutions Electronic mail Fuzzy Modeling Least squares methods Nonlinear systems OLS Space technology Takagi-Sugeno model |
title | Nonlinear system identification based on adaptive competitive clustering and OLS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20system%20identification%20based%20on%20adaptive%20competitive%20clustering%20and%20OLS&rft.btitle=2009%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Hao%20Wan-jun&rft.date=2009-06&rft.spage=1178&rft.epage=1183&rft.pages=1178-1183&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424427222&rft.isbn_list=1424427223&rft_id=info:doi/10.1109/CCDC.2009.5192007&rft.eisbn=9781424427239&rft.eisbn_list=1424427231&rft_dat=%3Cieee_6IE%3E5192007%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_51920073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192007&rfr_iscdi=true |