Loading…
Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data
The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1274 |
container_issue | |
container_start_page | 1271 |
container_title | |
container_volume | |
creator | Owen, J.P. Wipf, D.P. Attias, H.T. Sekihara, K. Nagarajan, S.S. |
description | The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas. |
doi_str_mv | 10.1109/ISBI.2009.5193294 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5193294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5193294</ieee_id><sourcerecordid>5193294</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5ef81325db66bde04e54a771bcb4f9aa6ed5348d42aa783089dc7372c9f7db33</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1LopR-AGLjH0jrZx0vAYVSqQiJsq_seEKNWgfZDlX_niCCmM3V0Zk7i0HohpIppUTPluv75ZQRoqeSas60OEFXVDAh-A-dohHVQhalkOzsX1ByPgilWXmJJil9kH5Ub4kYofTa2i5lvIe8bV3CTRtxhLoNKceuzj68YxuND9j08OXzEZvgcNOFHttgdrhfDfDnLOQDQBgqqe1iDeng8xY_V4tZVS2wM9lco4vG7BJMhhyj9WP19vBUrF4Wy4e7VeE1yYWEpqScSWfnc-uACJDCKEVtbUWjjZmDk1yUTjBjVMlJqV2tuGK1bpSznI_R7e9VDwCbz-j3Jh43w-v4N26DYQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Owen, J.P. ; Wipf, D.P. ; Attias, H.T. ; Sekihara, K. ; Nagarajan, S.S.</creator><creatorcontrib>Owen, J.P. ; Wipf, D.P. ; Attias, H.T. ; Sekihara, K. ; Nagarajan, S.S.</creatorcontrib><description>The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5193294</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Biomedical imaging ; Biomedical measurements ; Brain ; Computational complexity ; Electroencephalography ; functional connectivity ; Inverse problems ; Magnetic field measurement ; Magnetoencephalography ; Robustness ; Sensor arrays ; source localization</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.1271-1274</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5193294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5193294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Owen, J.P.</creatorcontrib><creatorcontrib>Wipf, D.P.</creatorcontrib><creatorcontrib>Attias, H.T.</creatorcontrib><creatorcontrib>Sekihara, K.</creatorcontrib><creatorcontrib>Nagarajan, S.S.</creatorcontrib><title>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.</description><subject>Bayesian methods</subject><subject>Biomedical imaging</subject><subject>Biomedical measurements</subject><subject>Brain</subject><subject>Computational complexity</subject><subject>Electroencephalography</subject><subject>functional connectivity</subject><subject>Inverse problems</subject><subject>Magnetic field measurement</subject><subject>Magnetoencephalography</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>source localization</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtOwzAQRc1LopR-AGLjH0jrZx0vAYVSqQiJsq_seEKNWgfZDlX_niCCmM3V0Zk7i0HohpIppUTPluv75ZQRoqeSas60OEFXVDAh-A-dohHVQhalkOzsX1ByPgilWXmJJil9kH5Ub4kYofTa2i5lvIe8bV3CTRtxhLoNKceuzj68YxuND9j08OXzEZvgcNOFHttgdrhfDfDnLOQDQBgqqe1iDeng8xY_V4tZVS2wM9lco4vG7BJMhhyj9WP19vBUrF4Wy4e7VeE1yYWEpqScSWfnc-uACJDCKEVtbUWjjZmDk1yUTjBjVMlJqV2tuGK1bpSznI_R7e9VDwCbz-j3Jh43w-v4N26DYQw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Owen, J.P.</creator><creator>Wipf, D.P.</creator><creator>Attias, H.T.</creator><creator>Sekihara, K.</creator><creator>Nagarajan, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</title><author>Owen, J.P. ; Wipf, D.P. ; Attias, H.T. ; Sekihara, K. ; Nagarajan, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5ef81325db66bde04e54a771bcb4f9aa6ed5348d42aa783089dc7372c9f7db33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian methods</topic><topic>Biomedical imaging</topic><topic>Biomedical measurements</topic><topic>Brain</topic><topic>Computational complexity</topic><topic>Electroencephalography</topic><topic>functional connectivity</topic><topic>Inverse problems</topic><topic>Magnetic field measurement</topic><topic>Magnetoencephalography</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>source localization</topic><toplevel>online_resources</toplevel><creatorcontrib>Owen, J.P.</creatorcontrib><creatorcontrib>Wipf, D.P.</creatorcontrib><creatorcontrib>Attias, H.T.</creatorcontrib><creatorcontrib>Sekihara, K.</creatorcontrib><creatorcontrib>Nagarajan, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Owen, J.P.</au><au>Wipf, D.P.</au><au>Attias, H.T.</au><au>Sekihara, K.</au><au>Nagarajan, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-06</date><risdate>2009</risdate><spage>1271</spage><epage>1274</epage><pages>1271-1274</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5193294</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.1271-1274 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_5193294 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Biomedical imaging Biomedical measurements Brain Computational complexity Electroencephalography functional connectivity Inverse problems Magnetic field measurement Magnetoencephalography Robustness Sensor arrays source localization |
title | Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20methods%20for%20reconstructing%20brain%20activity%20and%20functional%20connectivity%20between%20brain%20sourceswith%20MEG/EEG%20data&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Owen,%20J.P.&rft.date=2009-06&rft.spage=1271&rft.epage=1274&rft.pages=1271-1274&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5193294&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&rft_dat=%3Cieee_6IE%3E5193294%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5ef81325db66bde04e54a771bcb4f9aa6ed5348d42aa783089dc7372c9f7db33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5193294&rfr_iscdi=true |