Loading…

Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data

The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm...

Full description

Saved in:
Bibliographic Details
Main Authors: Owen, J.P., Wipf, D.P., Attias, H.T., Sekihara, K., Nagarajan, S.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1274
container_issue
container_start_page 1271
container_title
container_volume
creator Owen, J.P.
Wipf, D.P.
Attias, H.T.
Sekihara, K.
Nagarajan, S.S.
description The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.
doi_str_mv 10.1109/ISBI.2009.5193294
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5193294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5193294</ieee_id><sourcerecordid>5193294</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5ef81325db66bde04e54a771bcb4f9aa6ed5348d42aa783089dc7372c9f7db33</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1LopR-AGLjH0jrZx0vAYVSqQiJsq_seEKNWgfZDlX_niCCmM3V0Zk7i0HohpIppUTPluv75ZQRoqeSas60OEFXVDAh-A-dohHVQhalkOzsX1ByPgilWXmJJil9kH5Ub4kYofTa2i5lvIe8bV3CTRtxhLoNKceuzj68YxuND9j08OXzEZvgcNOFHttgdrhfDfDnLOQDQBgqqe1iDeng8xY_V4tZVS2wM9lco4vG7BJMhhyj9WP19vBUrF4Wy4e7VeE1yYWEpqScSWfnc-uACJDCKEVtbUWjjZmDk1yUTjBjVMlJqV2tuGK1bpSznI_R7e9VDwCbz-j3Jh43w-v4N26DYQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Owen, J.P. ; Wipf, D.P. ; Attias, H.T. ; Sekihara, K. ; Nagarajan, S.S.</creator><creatorcontrib>Owen, J.P. ; Wipf, D.P. ; Attias, H.T. ; Sekihara, K. ; Nagarajan, S.S.</creatorcontrib><description>The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5193294</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Biomedical imaging ; Biomedical measurements ; Brain ; Computational complexity ; Electroencephalography ; functional connectivity ; Inverse problems ; Magnetic field measurement ; Magnetoencephalography ; Robustness ; Sensor arrays ; source localization</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.1271-1274</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5193294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5193294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Owen, J.P.</creatorcontrib><creatorcontrib>Wipf, D.P.</creatorcontrib><creatorcontrib>Attias, H.T.</creatorcontrib><creatorcontrib>Sekihara, K.</creatorcontrib><creatorcontrib>Nagarajan, S.S.</creatorcontrib><title>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.</description><subject>Bayesian methods</subject><subject>Biomedical imaging</subject><subject>Biomedical measurements</subject><subject>Brain</subject><subject>Computational complexity</subject><subject>Electroencephalography</subject><subject>functional connectivity</subject><subject>Inverse problems</subject><subject>Magnetic field measurement</subject><subject>Magnetoencephalography</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>source localization</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtOwzAQRc1LopR-AGLjH0jrZx0vAYVSqQiJsq_seEKNWgfZDlX_niCCmM3V0Zk7i0HohpIppUTPluv75ZQRoqeSas60OEFXVDAh-A-dohHVQhalkOzsX1ByPgilWXmJJil9kH5Ub4kYofTa2i5lvIe8bV3CTRtxhLoNKceuzj68YxuND9j08OXzEZvgcNOFHttgdrhfDfDnLOQDQBgqqe1iDeng8xY_V4tZVS2wM9lco4vG7BJMhhyj9WP19vBUrF4Wy4e7VeE1yYWEpqScSWfnc-uACJDCKEVtbUWjjZmDk1yUTjBjVMlJqV2tuGK1bpSznI_R7e9VDwCbz-j3Jh43w-v4N26DYQw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Owen, J.P.</creator><creator>Wipf, D.P.</creator><creator>Attias, H.T.</creator><creator>Sekihara, K.</creator><creator>Nagarajan, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</title><author>Owen, J.P. ; Wipf, D.P. ; Attias, H.T. ; Sekihara, K. ; Nagarajan, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5ef81325db66bde04e54a771bcb4f9aa6ed5348d42aa783089dc7372c9f7db33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian methods</topic><topic>Biomedical imaging</topic><topic>Biomedical measurements</topic><topic>Brain</topic><topic>Computational complexity</topic><topic>Electroencephalography</topic><topic>functional connectivity</topic><topic>Inverse problems</topic><topic>Magnetic field measurement</topic><topic>Magnetoencephalography</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>source localization</topic><toplevel>online_resources</toplevel><creatorcontrib>Owen, J.P.</creatorcontrib><creatorcontrib>Wipf, D.P.</creatorcontrib><creatorcontrib>Attias, H.T.</creatorcontrib><creatorcontrib>Sekihara, K.</creatorcontrib><creatorcontrib>Nagarajan, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Owen, J.P.</au><au>Wipf, D.P.</au><au>Attias, H.T.</au><au>Sekihara, K.</au><au>Nagarajan, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-06</date><risdate>2009</risdate><spage>1271</spage><epage>1274</epage><pages>1271-1274</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5193294</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.1271-1274
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_5193294
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Biomedical imaging
Biomedical measurements
Brain
Computational complexity
Electroencephalography
functional connectivity
Inverse problems
Magnetic field measurement
Magnetoencephalography
Robustness
Sensor arrays
source localization
title Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20methods%20for%20reconstructing%20brain%20activity%20and%20functional%20connectivity%20between%20brain%20sourceswith%20MEG/EEG%20data&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Owen,%20J.P.&rft.date=2009-06&rft.spage=1271&rft.epage=1274&rft.pages=1271-1274&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5193294&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&rft_dat=%3Cieee_6IE%3E5193294%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5ef81325db66bde04e54a771bcb4f9aa6ed5348d42aa783089dc7372c9f7db33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5193294&rfr_iscdi=true