Loading…
Concept Extraction from Student Essays, Towards Concept Map Mining
This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machin...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 225 |
container_issue | |
container_start_page | 221 |
container_title | |
container_volume | |
creator | Villalon, J. Calvo, R.A. |
description | This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining. |
doi_str_mv | 10.1109/ICALT.2009.215 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5194208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5194208</ieee_id><sourcerecordid>5194208</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-bd8ac143db891ada0c981aab83714ff764d27dc7cf4de958b01082e657735d173</originalsourceid><addsrcrecordid>eNo9jktLxDAUhaMoOI6zdeMmP8DW3Lyz1DI-YAYXVnA33CapBJy2NBWdf--Ij9U5HD4OHyHnwEoA5q4equtVXXLGXMlBHZBTZrRTwgDAIZlx0FAIY16O_ruGE7LIOTWMa6OVUnZGbqq-83GY6PJzGtFPqe9oO_Zb-jS9h9jt95xxly9p3X_gGDL949c40HXqUvd6Ro5bfMtx8Ztz8ny7rKv7YvV49-1YJC5hKppg0YMUobEOMCDzzgJiY_fGsm2NloGb4I1vZYhO2YYBszxqZYxQAYyYk4uf3xRj3Axj2uK42yhwkjMrvgAl-UuW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Concept Extraction from Student Essays, Towards Concept Map Mining</title><source>IEEE Xplore All Conference Series</source><creator>Villalon, J. ; Calvo, R.A.</creator><creatorcontrib>Villalon, J. ; Calvo, R.A.</creatorcontrib><description>This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.</description><identifier>ISSN: 2161-3761</identifier><identifier>EISSN: 2161-377X</identifier><identifier>EISBN: 0769537111</identifier><identifier>EISBN: 9780769537115</identifier><identifier>DOI: 10.1109/ICALT.2009.215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Collision mitigation ; concept map mining ; concept maps ; Coordinate measuring machines ; Data mining ; Information analysis ; information extraction ; Plagiarism ; Reflection ; Terminology ; text mining ; Visualization ; Writing</subject><ispartof>2009 Ninth IEEE International Conference on Advanced Learning Technologies, 2009, p.221-225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5194208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5194208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Villalon, J.</creatorcontrib><creatorcontrib>Calvo, R.A.</creatorcontrib><title>Concept Extraction from Student Essays, Towards Concept Map Mining</title><title>2009 Ninth IEEE International Conference on Advanced Learning Technologies</title><addtitle>ICALT</addtitle><description>This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.</description><subject>Algorithm design and analysis</subject><subject>Collision mitigation</subject><subject>concept map mining</subject><subject>concept maps</subject><subject>Coordinate measuring machines</subject><subject>Data mining</subject><subject>Information analysis</subject><subject>information extraction</subject><subject>Plagiarism</subject><subject>Reflection</subject><subject>Terminology</subject><subject>text mining</subject><subject>Visualization</subject><subject>Writing</subject><issn>2161-3761</issn><issn>2161-377X</issn><isbn>0769537111</isbn><isbn>9780769537115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jktLxDAUhaMoOI6zdeMmP8DW3Lyz1DI-YAYXVnA33CapBJy2NBWdf--Ij9U5HD4OHyHnwEoA5q4equtVXXLGXMlBHZBTZrRTwgDAIZlx0FAIY16O_ruGE7LIOTWMa6OVUnZGbqq-83GY6PJzGtFPqe9oO_Zb-jS9h9jt95xxly9p3X_gGDL949c40HXqUvd6Ro5bfMtx8Ztz8ny7rKv7YvV49-1YJC5hKppg0YMUobEOMCDzzgJiY_fGsm2NloGb4I1vZYhO2YYBszxqZYxQAYyYk4uf3xRj3Axj2uK42yhwkjMrvgAl-UuW</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Villalon, J.</creator><creator>Calvo, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Concept Extraction from Student Essays, Towards Concept Map Mining</title><author>Villalon, J. ; Calvo, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-bd8ac143db891ada0c981aab83714ff764d27dc7cf4de958b01082e657735d173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Collision mitigation</topic><topic>concept map mining</topic><topic>concept maps</topic><topic>Coordinate measuring machines</topic><topic>Data mining</topic><topic>Information analysis</topic><topic>information extraction</topic><topic>Plagiarism</topic><topic>Reflection</topic><topic>Terminology</topic><topic>text mining</topic><topic>Visualization</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Villalon, J.</creatorcontrib><creatorcontrib>Calvo, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Villalon, J.</au><au>Calvo, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Concept Extraction from Student Essays, Towards Concept Map Mining</atitle><btitle>2009 Ninth IEEE International Conference on Advanced Learning Technologies</btitle><stitle>ICALT</stitle><date>2009-07</date><risdate>2009</risdate><spage>221</spage><epage>225</epage><pages>221-225</pages><issn>2161-3761</issn><eissn>2161-377X</eissn><eisbn>0769537111</eisbn><eisbn>9780769537115</eisbn><abstract>This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.</abstract><pub>IEEE</pub><doi>10.1109/ICALT.2009.215</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-3761 |
ispartof | 2009 Ninth IEEE International Conference on Advanced Learning Technologies, 2009, p.221-225 |
issn | 2161-3761 2161-377X |
language | eng |
recordid | cdi_ieee_primary_5194208 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Collision mitigation concept map mining concept maps Coordinate measuring machines Data mining Information analysis information extraction Plagiarism Reflection Terminology text mining Visualization Writing |
title | Concept Extraction from Student Essays, Towards Concept Map Mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Concept%20Extraction%20from%20Student%20Essays,%20Towards%20Concept%20Map%20Mining&rft.btitle=2009%20Ninth%20IEEE%20International%20Conference%20on%20Advanced%20Learning%20Technologies&rft.au=Villalon,%20J.&rft.date=2009-07&rft.spage=221&rft.epage=225&rft.pages=221-225&rft.issn=2161-3761&rft.eissn=2161-377X&rft_id=info:doi/10.1109/ICALT.2009.215&rft.eisbn=0769537111&rft.eisbn_list=9780769537115&rft_dat=%3Cieee_CHZPO%3E5194208%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-bd8ac143db891ada0c981aab83714ff764d27dc7cf4de958b01082e657735d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5194208&rfr_iscdi=true |