Loading…

Concept Extraction from Student Essays, Towards Concept Map Mining

This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machin...

Full description

Saved in:
Bibliographic Details
Main Authors: Villalon, J., Calvo, R.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 225
container_issue
container_start_page 221
container_title
container_volume
creator Villalon, J.
Calvo, R.A.
description This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.
doi_str_mv 10.1109/ICALT.2009.215
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5194208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5194208</ieee_id><sourcerecordid>5194208</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-bd8ac143db891ada0c981aab83714ff764d27dc7cf4de958b01082e657735d173</originalsourceid><addsrcrecordid>eNo9jktLxDAUhaMoOI6zdeMmP8DW3Lyz1DI-YAYXVnA33CapBJy2NBWdf--Ij9U5HD4OHyHnwEoA5q4equtVXXLGXMlBHZBTZrRTwgDAIZlx0FAIY16O_ruGE7LIOTWMa6OVUnZGbqq-83GY6PJzGtFPqe9oO_Zb-jS9h9jt95xxly9p3X_gGDL949c40HXqUvd6Ro5bfMtx8Ztz8ny7rKv7YvV49-1YJC5hKppg0YMUobEOMCDzzgJiY_fGsm2NloGb4I1vZYhO2YYBszxqZYxQAYyYk4uf3xRj3Axj2uK42yhwkjMrvgAl-UuW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Concept Extraction from Student Essays, Towards Concept Map Mining</title><source>IEEE Xplore All Conference Series</source><creator>Villalon, J. ; Calvo, R.A.</creator><creatorcontrib>Villalon, J. ; Calvo, R.A.</creatorcontrib><description>This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.</description><identifier>ISSN: 2161-3761</identifier><identifier>EISSN: 2161-377X</identifier><identifier>EISBN: 0769537111</identifier><identifier>EISBN: 9780769537115</identifier><identifier>DOI: 10.1109/ICALT.2009.215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Collision mitigation ; concept map mining ; concept maps ; Coordinate measuring machines ; Data mining ; Information analysis ; information extraction ; Plagiarism ; Reflection ; Terminology ; text mining ; Visualization ; Writing</subject><ispartof>2009 Ninth IEEE International Conference on Advanced Learning Technologies, 2009, p.221-225</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5194208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5194208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Villalon, J.</creatorcontrib><creatorcontrib>Calvo, R.A.</creatorcontrib><title>Concept Extraction from Student Essays, Towards Concept Map Mining</title><title>2009 Ninth IEEE International Conference on Advanced Learning Technologies</title><addtitle>ICALT</addtitle><description>This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.</description><subject>Algorithm design and analysis</subject><subject>Collision mitigation</subject><subject>concept map mining</subject><subject>concept maps</subject><subject>Coordinate measuring machines</subject><subject>Data mining</subject><subject>Information analysis</subject><subject>information extraction</subject><subject>Plagiarism</subject><subject>Reflection</subject><subject>Terminology</subject><subject>text mining</subject><subject>Visualization</subject><subject>Writing</subject><issn>2161-3761</issn><issn>2161-377X</issn><isbn>0769537111</isbn><isbn>9780769537115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jktLxDAUhaMoOI6zdeMmP8DW3Lyz1DI-YAYXVnA33CapBJy2NBWdf--Ij9U5HD4OHyHnwEoA5q4equtVXXLGXMlBHZBTZrRTwgDAIZlx0FAIY16O_ruGE7LIOTWMa6OVUnZGbqq-83GY6PJzGtFPqe9oO_Zb-jS9h9jt95xxly9p3X_gGDL949c40HXqUvd6Ro5bfMtx8Ztz8ny7rKv7YvV49-1YJC5hKppg0YMUobEOMCDzzgJiY_fGsm2NloGb4I1vZYhO2YYBszxqZYxQAYyYk4uf3xRj3Axj2uK42yhwkjMrvgAl-UuW</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Villalon, J.</creator><creator>Calvo, R.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Concept Extraction from Student Essays, Towards Concept Map Mining</title><author>Villalon, J. ; Calvo, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-bd8ac143db891ada0c981aab83714ff764d27dc7cf4de958b01082e657735d173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Collision mitigation</topic><topic>concept map mining</topic><topic>concept maps</topic><topic>Coordinate measuring machines</topic><topic>Data mining</topic><topic>Information analysis</topic><topic>information extraction</topic><topic>Plagiarism</topic><topic>Reflection</topic><topic>Terminology</topic><topic>text mining</topic><topic>Visualization</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Villalon, J.</creatorcontrib><creatorcontrib>Calvo, R.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Villalon, J.</au><au>Calvo, R.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Concept Extraction from Student Essays, Towards Concept Map Mining</atitle><btitle>2009 Ninth IEEE International Conference on Advanced Learning Technologies</btitle><stitle>ICALT</stitle><date>2009-07</date><risdate>2009</risdate><spage>221</spage><epage>225</epage><pages>221-225</pages><issn>2161-3761</issn><eissn>2161-377X</eissn><eisbn>0769537111</eisbn><eisbn>9780769537115</eisbn><abstract>This paper presents a new approach for automatic concept extraction, using grammatical parsers and Latent Semantic Analysis. The methodology is described, also the tool used to build the benchmarking corpus. The results obtained on student essays shows good inter-rater agreement and promising machine extraction performance. Concept extraction is the first step to automatically extract concept maps from studentpsilas essays or Concept Map Mining.</abstract><pub>IEEE</pub><doi>10.1109/ICALT.2009.215</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-3761
ispartof 2009 Ninth IEEE International Conference on Advanced Learning Technologies, 2009, p.221-225
issn 2161-3761
2161-377X
language eng
recordid cdi_ieee_primary_5194208
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Collision mitigation
concept map mining
concept maps
Coordinate measuring machines
Data mining
Information analysis
information extraction
Plagiarism
Reflection
Terminology
text mining
Visualization
Writing
title Concept Extraction from Student Essays, Towards Concept Map Mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Concept%20Extraction%20from%20Student%20Essays,%20Towards%20Concept%20Map%20Mining&rft.btitle=2009%20Ninth%20IEEE%20International%20Conference%20on%20Advanced%20Learning%20Technologies&rft.au=Villalon,%20J.&rft.date=2009-07&rft.spage=221&rft.epage=225&rft.pages=221-225&rft.issn=2161-3761&rft.eissn=2161-377X&rft_id=info:doi/10.1109/ICALT.2009.215&rft.eisbn=0769537111&rft.eisbn_list=9780769537115&rft_dat=%3Cieee_CHZPO%3E5194208%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-bd8ac143db891ada0c981aab83714ff764d27dc7cf4de958b01082e657735d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5194208&rfr_iscdi=true