Loading…
A scalable solution to n-bit parity via artificial development
The design of electronic circuits with model-free heuristics like evolutionary algorithms is an attractive concept and field of research. Although successful to a point, evolution of circuits that are bigger than a 3-bit multiplier is hindered by the scalability problem. Modelling the biological dev...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of electronic circuits with model-free heuristics like evolutionary algorithms is an attractive concept and field of research. Although successful to a point, evolution of circuits that are bigger than a 3-bit multiplier is hindered by the scalability problem. Modelling the biological development as an artificial genotype-phenotype mapping mechanism has been shown to improve scalability on some simple circuit problems and pattern formations. As a candidate solution to the scalability issue, an artificial developmental system is presented. The presented artificial developmental system is shown to develop a scalable parity circuit, which could be infinitely developed to build a growing parity circuit, hence, represents a general, scalable solution to n-bit parity. The result obtained further supports the artificial developmental system as a good candidate solution to the scalability problem in evolvable hardware. |
---|---|
DOI: | 10.1109/RME.2009.5201348 |