Loading…
An empirical study of context in object detection
This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contrib...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c244t-231ec0725b1e7e65aa356320fa9acbc771e1ebe7989a1c1b44a813bcad1bce2e3 |
---|---|
cites | |
container_end_page | 1278 |
container_issue | |
container_start_page | 1271 |
container_title | |
container_volume | |
creator | Divvala, Santosh K Hoiem, Derek Hays, James H Efros, Alexei A Hebert, Martial |
description | This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contribution of contextual information. In this work, we present our analysis on a standard dataset, using top-performing local appearance detectors as baseline. We evaluate several different sources of context and ways to utilize it. While we employ many contextual cues that have been used before, we also propose a few novel ones including the use of geographic context and a new approach for using object spatial support. |
doi_str_mv | 10.1109/CVPR.2009.5206532 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5206532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5206532</ieee_id><sourcerecordid>5206532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-231ec0725b1e7e65aa356320fa9acbc771e1ebe7989a1c1b44a813bcad1bce2e3</originalsourceid><addsrcrecordid>eNo1j9FKwzAUhiMquM09gHiTF2g956RNmstRdAqDDVFvR5KeQsbWjjaCe3sHzquP_-b7-YR4QMgRwT7VX5v3nABsXhLoUtGVmFtTYUFFoaxFvBbT_0F0IyYIWmXaor0T03HcAZAyBBOBi07y4RiHGNxejum7Ocm-laHvEv8kGTvZ-x2HJBtOZ8S-uxe3rduPPL9wJj5fnj_q12y1Xr7Vi1UWzrcpI4UcwFDpkQ3r0jlVakXQOuuCD8YgI3s2trIOA_qicBUqH1yDPjCxmonHP29k5u1xiAc3nLaXXPULKMJGpw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An empirical study of context in object detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Divvala, Santosh K ; Hoiem, Derek ; Hays, James H ; Efros, Alexei A ; Hebert, Martial</creator><creatorcontrib>Divvala, Santosh K ; Hoiem, Derek ; Hays, James H ; Efros, Alexei A ; Hebert, Martial</creatorcontrib><description>This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contribution of contextual information. In this work, we present our analysis on a standard dataset, using top-performing local appearance detectors as baseline. We evaluate several different sources of context and ways to utilize it. While we employ many contextual cues that have been used before, we also propose a few novel ones including the use of geographic context and a new approach for using object spatial support.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424439922</identifier><identifier>ISBN: 9781424439928</identifier><identifier>EISBN: 9781424439911</identifier><identifier>EISBN: 1424439914</identifier><identifier>DOI: 10.1109/CVPR.2009.5206532</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Computer vision ; Context modeling ; Gas detectors ; Layout ; Object detection ; Ocean temperature ; Pixel ; Sea surface ; Shape</subject><ispartof>2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, p.1271-1278</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-231ec0725b1e7e65aa356320fa9acbc771e1ebe7989a1c1b44a813bcad1bce2e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5206532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5206532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Divvala, Santosh K</creatorcontrib><creatorcontrib>Hoiem, Derek</creatorcontrib><creatorcontrib>Hays, James H</creatorcontrib><creatorcontrib>Efros, Alexei A</creatorcontrib><creatorcontrib>Hebert, Martial</creatorcontrib><title>An empirical study of context in object detection</title><title>2009 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contribution of contextual information. In this work, we present our analysis on a standard dataset, using top-performing local appearance detectors as baseline. We evaluate several different sources of context and ways to utilize it. While we employ many contextual cues that have been used before, we also propose a few novel ones including the use of geographic context and a new approach for using object spatial support.</description><subject>Cameras</subject><subject>Computer vision</subject><subject>Context modeling</subject><subject>Gas detectors</subject><subject>Layout</subject><subject>Object detection</subject><subject>Ocean temperature</subject><subject>Pixel</subject><subject>Sea surface</subject><subject>Shape</subject><issn>1063-6919</issn><isbn>1424439922</isbn><isbn>9781424439928</isbn><isbn>9781424439911</isbn><isbn>1424439914</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9FKwzAUhiMquM09gHiTF2g956RNmstRdAqDDVFvR5KeQsbWjjaCe3sHzquP_-b7-YR4QMgRwT7VX5v3nABsXhLoUtGVmFtTYUFFoaxFvBbT_0F0IyYIWmXaor0T03HcAZAyBBOBi07y4RiHGNxejum7Ocm-laHvEv8kGTvZ-x2HJBtOZ8S-uxe3rduPPL9wJj5fnj_q12y1Xr7Vi1UWzrcpI4UcwFDpkQ3r0jlVakXQOuuCD8YgI3s2trIOA_qicBUqH1yDPjCxmonHP29k5u1xiAc3nLaXXPULKMJGpw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Divvala, Santosh K</creator><creator>Hoiem, Derek</creator><creator>Hays, James H</creator><creator>Efros, Alexei A</creator><creator>Hebert, Martial</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>An empirical study of context in object detection</title><author>Divvala, Santosh K ; Hoiem, Derek ; Hays, James H ; Efros, Alexei A ; Hebert, Martial</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-231ec0725b1e7e65aa356320fa9acbc771e1ebe7989a1c1b44a813bcad1bce2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cameras</topic><topic>Computer vision</topic><topic>Context modeling</topic><topic>Gas detectors</topic><topic>Layout</topic><topic>Object detection</topic><topic>Ocean temperature</topic><topic>Pixel</topic><topic>Sea surface</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Divvala, Santosh K</creatorcontrib><creatorcontrib>Hoiem, Derek</creatorcontrib><creatorcontrib>Hays, James H</creatorcontrib><creatorcontrib>Efros, Alexei A</creatorcontrib><creatorcontrib>Hebert, Martial</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Divvala, Santosh K</au><au>Hoiem, Derek</au><au>Hays, James H</au><au>Efros, Alexei A</au><au>Hebert, Martial</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An empirical study of context in object detection</atitle><btitle>2009 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2009-06</date><risdate>2009</risdate><spage>1271</spage><epage>1278</epage><pages>1271-1278</pages><issn>1063-6919</issn><isbn>1424439922</isbn><isbn>9781424439928</isbn><eisbn>9781424439911</eisbn><eisbn>1424439914</eisbn><abstract>This paper presents an empirical evaluation of the role of context in a contemporary, challenging object detection task - the PASCAL VOC 2008. Previous experiments with context have mostly been done on home-grown datasets, often with non-standard baselines, making it difficult to isolate the contribution of contextual information. In this work, we present our analysis on a standard dataset, using top-performing local appearance detectors as baseline. We evaluate several different sources of context and ways to utilize it. While we employ many contextual cues that have been used before, we also propose a few novel ones including the use of geographic context and a new approach for using object spatial support.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2009.5206532</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, p.1271-1278 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_5206532 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Computer vision Context modeling Gas detectors Layout Object detection Ocean temperature Pixel Sea surface Shape |
title | An empirical study of context in object detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20empirical%20study%20of%20context%20in%20object%20detection&rft.btitle=2009%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Divvala,%20Santosh%20K&rft.date=2009-06&rft.spage=1271&rft.epage=1278&rft.pages=1271-1278&rft.issn=1063-6919&rft.isbn=1424439922&rft.isbn_list=9781424439928&rft_id=info:doi/10.1109/CVPR.2009.5206532&rft.eisbn=9781424439911&rft.eisbn_list=1424439914&rft_dat=%3Cieee_6IE%3E5206532%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-231ec0725b1e7e65aa356320fa9acbc771e1ebe7989a1c1b44a813bcad1bce2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5206532&rfr_iscdi=true |