Loading…
Large Area Pulsed Corona Discharge in Water for Disinfection and Pollution Control
To investigate the efficiency of submerged pulse corona (SPC) discharges in water we built a laboratory scale, parallel-plate reactor that is part of a closed loop water circulation system. A pulsed voltage is applied across the electrodes. One of the electrodes is coated with a porous ceramic layer...
Saved in:
Published in: | IEEE transactions on dielectrics and electrical insulation 2009-08, Vol.16 (4), p.1061-1065 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the efficiency of submerged pulse corona (SPC) discharges in water we built a laboratory scale, parallel-plate reactor that is part of a closed loop water circulation system. A pulsed voltage is applied across the electrodes. One of the electrodes is coated with a porous ceramic layer to create local field enhancements to initiate corona discharges. For energization of the SPC reactor a pulse generator was developed which is based on a capacitor discharge initiated by a semiconductor switch. A pulse transformer, followed by two magnetic pulse compression stages, produces voltage pulses with amplitudes of up to 30 kV at a pulse width of 0.3 μs. Simulation of the circuit behavior leads to good agreement with voltage and current measurements. Details of the pulse generator and first experimental results concerning the efficiency of radical production are presented. Depending on the conductivity of the water to be treated, pulse currents of > 600 A at a voltage of 20 kV to > 30 kV are obtained for electrode sizes of around 50 cm 2 . The efficiency of the radical production is measured in terms of the hydrogen peroxide (H 2 O 2 ) concentration, which is formed by recombination of hydroxyl radicals (OH.) at sufficiently high concentrations downstream of the plasma reactor. At pulse repetition rates of 20 to 100 Hz, H 2 O 2 concentrations of several mg/l are produced, at efficiencies in the range of up to ≈1 g/kWh. |
---|---|
ISSN: | 1070-9878 1558-4135 |
DOI: | 10.1109/TDEI.2009.5211855 |