Loading…

Generation of Multisinusoidal Test Signals for the Identification of Synchronous-Machine Parameters by Using a Voltage-Source Inverter

With the standstill frequency-response (SSFR) test, accurate electrical-machine models can be identified. However, it can be a time-consuming method, particularly in case the machine has to be identified at low frequencies. To shorten the required time for identification, in this paper, the response...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2010-01, Vol.57 (1), p.430-439
Main Authors: Vandoorn, T.L., De Belie, F.M., Vyncke, T.J., Melkebeek, J.A., Lataire, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the standstill frequency-response (SSFR) test, accurate electrical-machine models can be identified. However, it can be a time-consuming method, particularly in case the machine has to be identified at low frequencies. To shorten the required time for identification, in this paper, the response on a broadband signal is measured, resulting in a multisine SSFR test. To generate the broadband signal, a high-power linear amplifier can be applied as a waveform generator. As this signal generator is not commonly available in the field, the application of a voltage-source inverter (VSI) is discussed. The multisine SSFR test with a VSI allows swift evaluation of the influence of frequency, saturation, and cross saturation on the q-and d-axis parameters with a signal generator that is often already available to control the machine. Extensive measurements are performed on several permanent-magnet synchronous machines and the method can be extended to synchronous machines with rotor-field winding. By applying a switching converter instead of a linear amplifier, it can be expected that the identification results are affected by the switching actions. Therefore, multisine SSFR tests with either a VSI or a high-power linear amplifier as well as conventional tests as described in the IEEE standard are performed, and the results are compared.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2009.2031135