Loading…
VSM-RF: A method of relevance feedback in Keyword Search over Relational Databases
In keyword search over relational databases (KSORD), retrieval of user's initial query is often unsatisfying. User has to reformulate his query and execute the new query, which costs much time and effort. In this paper, a method of automatically reformulating user queries by relevance feedback...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In keyword search over relational databases (KSORD), retrieval of user's initial query is often unsatisfying. User has to reformulate his query and execute the new query, which costs much time and effort. In this paper, a method of automatically reformulating user queries by relevance feedback is introduced, which is named VSM-RF. Aimed at the results of KSORD systems, VSM-RF adopts a ranking method based on vector space model to rank KSORD results. After the first time of retrieval, using user feedback or pseudo feedback just as user like, VSM-RF computes expansion terms based on probability and reformulates the new query using query expansion. After KSORD systems executing the new query, more relevant results are produced by the new query in the result list and presented to user. Experimental results verify this method's effectiveness. |
---|---|
DOI: | 10.1109/ITIME.2009.5236323 |