Loading…
Labeling-based knowledge construction for real-world event understanding
A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world know...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 124 |
container_issue | |
container_start_page | 116 |
container_title | |
container_volume | |
creator | Kamei, K. Yanagisawa, Y. Maekawa, T. Kishino, Y. Sakurai, Y. Okadome, T. |
description | A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment. |
doi_str_mv | 10.1109/COGINF.2009.5250792 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5250792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5250792</ieee_id><sourcerecordid>5250792</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3d164ba397a0e8cd7b4eabdaadc650ffe1d72d9d342e85ac098c7f2e0abc4d0c3</originalsourceid><addsrcrecordid>eNotj09Lw0AUxBekoNZ8gl7yBRL3bzZ7lGCtEOpFz-Vl30uJxo3spha_vRE7lzkMv2GGsY3gpRDc3TcvT8_7bSk5d6WRhlsnr1jmbC201FpXWooVu_2LHddaVdcsS-mdL9JGmcresF0LHY1DOBYdJML8I0znkfBIuZ9CmuPJz8MU8n6KeSQYi_MUR8zpm8KcnwJSTDMEXPg7tuphTJRdfM3eto-vza5ol43NQ1sMwpq5UCgq3YFyFjjVHm2nCToEQF8Z3vck0Ep0qLSk2oDnrva2l8Sh8xq5V2u2-e8diOjwFYdPiD-Hy3n1CwoXUEk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Labeling-based knowledge construction for real-world event understanding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kamei, K. ; Yanagisawa, Y. ; Maekawa, T. ; Kishino, Y. ; Sakurai, Y. ; Okadome, T.</creator><creatorcontrib>Kamei, K. ; Yanagisawa, Y. ; Maekawa, T. ; Kishino, Y. ; Sakurai, Y. ; Okadome, T.</creatorcontrib><description>A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.</description><identifier>ISBN: 9781424446421</identifier><identifier>ISBN: 1424446422</identifier><identifier>DOI: 10.1109/COGINF.2009.5250792</identifier><identifier>LCCN: 2009904436</identifier><language>eng</language><publisher>IEEE</publisher><subject>activities of daily life ; Artificial intelligence ; Cognition ; Cognitive science ; Computational modeling ; event detection ; event ontology ; Humans ; Information processing ; Intelligent sensors ; labeling ; Machine intelligence ; Problem-solving ; Psychology ; Sensor networked environment</subject><ispartof>2009 8th IEEE International Conference on Cognitive Informatics, 2009, p.116-124</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5250792$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5250792$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamei, K.</creatorcontrib><creatorcontrib>Yanagisawa, Y.</creatorcontrib><creatorcontrib>Maekawa, T.</creatorcontrib><creatorcontrib>Kishino, Y.</creatorcontrib><creatorcontrib>Sakurai, Y.</creatorcontrib><creatorcontrib>Okadome, T.</creatorcontrib><title>Labeling-based knowledge construction for real-world event understanding</title><title>2009 8th IEEE International Conference on Cognitive Informatics</title><addtitle>COGINF</addtitle><description>A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.</description><subject>activities of daily life</subject><subject>Artificial intelligence</subject><subject>Cognition</subject><subject>Cognitive science</subject><subject>Computational modeling</subject><subject>event detection</subject><subject>event ontology</subject><subject>Humans</subject><subject>Information processing</subject><subject>Intelligent sensors</subject><subject>labeling</subject><subject>Machine intelligence</subject><subject>Problem-solving</subject><subject>Psychology</subject><subject>Sensor networked environment</subject><isbn>9781424446421</isbn><isbn>1424446422</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09Lw0AUxBekoNZ8gl7yBRL3bzZ7lGCtEOpFz-Vl30uJxo3spha_vRE7lzkMv2GGsY3gpRDc3TcvT8_7bSk5d6WRhlsnr1jmbC201FpXWooVu_2LHddaVdcsS-mdL9JGmcresF0LHY1DOBYdJML8I0znkfBIuZ9CmuPJz8MU8n6KeSQYi_MUR8zpm8KcnwJSTDMEXPg7tuphTJRdfM3eto-vza5ol43NQ1sMwpq5UCgq3YFyFjjVHm2nCToEQF8Z3vck0Ep0qLSk2oDnrva2l8Sh8xq5V2u2-e8diOjwFYdPiD-Hy3n1CwoXUEk</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Kamei, K.</creator><creator>Yanagisawa, Y.</creator><creator>Maekawa, T.</creator><creator>Kishino, Y.</creator><creator>Sakurai, Y.</creator><creator>Okadome, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Labeling-based knowledge construction for real-world event understanding</title><author>Kamei, K. ; Yanagisawa, Y. ; Maekawa, T. ; Kishino, Y. ; Sakurai, Y. ; Okadome, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3d164ba397a0e8cd7b4eabdaadc650ffe1d72d9d342e85ac098c7f2e0abc4d0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>activities of daily life</topic><topic>Artificial intelligence</topic><topic>Cognition</topic><topic>Cognitive science</topic><topic>Computational modeling</topic><topic>event detection</topic><topic>event ontology</topic><topic>Humans</topic><topic>Information processing</topic><topic>Intelligent sensors</topic><topic>labeling</topic><topic>Machine intelligence</topic><topic>Problem-solving</topic><topic>Psychology</topic><topic>Sensor networked environment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamei, K.</creatorcontrib><creatorcontrib>Yanagisawa, Y.</creatorcontrib><creatorcontrib>Maekawa, T.</creatorcontrib><creatorcontrib>Kishino, Y.</creatorcontrib><creatorcontrib>Sakurai, Y.</creatorcontrib><creatorcontrib>Okadome, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamei, K.</au><au>Yanagisawa, Y.</au><au>Maekawa, T.</au><au>Kishino, Y.</au><au>Sakurai, Y.</au><au>Okadome, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Labeling-based knowledge construction for real-world event understanding</atitle><btitle>2009 8th IEEE International Conference on Cognitive Informatics</btitle><stitle>COGINF</stitle><date>2009-06</date><risdate>2009</risdate><spage>116</spage><epage>124</epage><pages>116-124</pages><isbn>9781424446421</isbn><isbn>1424446422</isbn><abstract>A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.</abstract><pub>IEEE</pub><doi>10.1109/COGINF.2009.5250792</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424446421 |
ispartof | 2009 8th IEEE International Conference on Cognitive Informatics, 2009, p.116-124 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5250792 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | activities of daily life Artificial intelligence Cognition Cognitive science Computational modeling event detection event ontology Humans Information processing Intelligent sensors labeling Machine intelligence Problem-solving Psychology Sensor networked environment |
title | Labeling-based knowledge construction for real-world event understanding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Labeling-based%20knowledge%20construction%20for%20real-world%20event%20understanding&rft.btitle=2009%208th%20IEEE%20International%20Conference%20on%20Cognitive%20Informatics&rft.au=Kamei,%20K.&rft.date=2009-06&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.isbn=9781424446421&rft.isbn_list=1424446422&rft_id=info:doi/10.1109/COGINF.2009.5250792&rft_dat=%3Cieee_6IE%3E5250792%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3d164ba397a0e8cd7b4eabdaadc650ffe1d72d9d342e85ac098c7f2e0abc4d0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5250792&rfr_iscdi=true |