Loading…

Labeling-based knowledge construction for real-world event understanding

A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world know...

Full description

Saved in:
Bibliographic Details
Main Authors: Kamei, K., Yanagisawa, Y., Maekawa, T., Kishino, Y., Sakurai, Y., Okadome, T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 124
container_issue
container_start_page 116
container_title
container_volume
creator Kamei, K.
Yanagisawa, Y.
Maekawa, T.
Kishino, Y.
Sakurai, Y.
Okadome, T.
description A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.
doi_str_mv 10.1109/COGINF.2009.5250792
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5250792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5250792</ieee_id><sourcerecordid>5250792</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3d164ba397a0e8cd7b4eabdaadc650ffe1d72d9d342e85ac098c7f2e0abc4d0c3</originalsourceid><addsrcrecordid>eNotj09Lw0AUxBekoNZ8gl7yBRL3bzZ7lGCtEOpFz-Vl30uJxo3spha_vRE7lzkMv2GGsY3gpRDc3TcvT8_7bSk5d6WRhlsnr1jmbC201FpXWooVu_2LHddaVdcsS-mdL9JGmcresF0LHY1DOBYdJML8I0znkfBIuZ9CmuPJz8MU8n6KeSQYi_MUR8zpm8KcnwJSTDMEXPg7tuphTJRdfM3eto-vza5ol43NQ1sMwpq5UCgq3YFyFjjVHm2nCToEQF8Z3vck0Ep0qLSk2oDnrva2l8Sh8xq5V2u2-e8diOjwFYdPiD-Hy3n1CwoXUEk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Labeling-based knowledge construction for real-world event understanding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kamei, K. ; Yanagisawa, Y. ; Maekawa, T. ; Kishino, Y. ; Sakurai, Y. ; Okadome, T.</creator><creatorcontrib>Kamei, K. ; Yanagisawa, Y. ; Maekawa, T. ; Kishino, Y. ; Sakurai, Y. ; Okadome, T.</creatorcontrib><description>A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.</description><identifier>ISBN: 9781424446421</identifier><identifier>ISBN: 1424446422</identifier><identifier>DOI: 10.1109/COGINF.2009.5250792</identifier><identifier>LCCN: 2009904436</identifier><language>eng</language><publisher>IEEE</publisher><subject>activities of daily life ; Artificial intelligence ; Cognition ; Cognitive science ; Computational modeling ; event detection ; event ontology ; Humans ; Information processing ; Intelligent sensors ; labeling ; Machine intelligence ; Problem-solving ; Psychology ; Sensor networked environment</subject><ispartof>2009 8th IEEE International Conference on Cognitive Informatics, 2009, p.116-124</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5250792$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5250792$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamei, K.</creatorcontrib><creatorcontrib>Yanagisawa, Y.</creatorcontrib><creatorcontrib>Maekawa, T.</creatorcontrib><creatorcontrib>Kishino, Y.</creatorcontrib><creatorcontrib>Sakurai, Y.</creatorcontrib><creatorcontrib>Okadome, T.</creatorcontrib><title>Labeling-based knowledge construction for real-world event understanding</title><title>2009 8th IEEE International Conference on Cognitive Informatics</title><addtitle>COGINF</addtitle><description>A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.</description><subject>activities of daily life</subject><subject>Artificial intelligence</subject><subject>Cognition</subject><subject>Cognitive science</subject><subject>Computational modeling</subject><subject>event detection</subject><subject>event ontology</subject><subject>Humans</subject><subject>Information processing</subject><subject>Intelligent sensors</subject><subject>labeling</subject><subject>Machine intelligence</subject><subject>Problem-solving</subject><subject>Psychology</subject><subject>Sensor networked environment</subject><isbn>9781424446421</isbn><isbn>1424446422</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09Lw0AUxBekoNZ8gl7yBRL3bzZ7lGCtEOpFz-Vl30uJxo3spha_vRE7lzkMv2GGsY3gpRDc3TcvT8_7bSk5d6WRhlsnr1jmbC201FpXWooVu_2LHddaVdcsS-mdL9JGmcresF0LHY1DOBYdJML8I0znkfBIuZ9CmuPJz8MU8n6KeSQYi_MUR8zpm8KcnwJSTDMEXPg7tuphTJRdfM3eto-vza5ol43NQ1sMwpq5UCgq3YFyFjjVHm2nCToEQF8Z3vck0Ep0qLSk2oDnrva2l8Sh8xq5V2u2-e8diOjwFYdPiD-Hy3n1CwoXUEk</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Kamei, K.</creator><creator>Yanagisawa, Y.</creator><creator>Maekawa, T.</creator><creator>Kishino, Y.</creator><creator>Sakurai, Y.</creator><creator>Okadome, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Labeling-based knowledge construction for real-world event understanding</title><author>Kamei, K. ; Yanagisawa, Y. ; Maekawa, T. ; Kishino, Y. ; Sakurai, Y. ; Okadome, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3d164ba397a0e8cd7b4eabdaadc650ffe1d72d9d342e85ac098c7f2e0abc4d0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>activities of daily life</topic><topic>Artificial intelligence</topic><topic>Cognition</topic><topic>Cognitive science</topic><topic>Computational modeling</topic><topic>event detection</topic><topic>event ontology</topic><topic>Humans</topic><topic>Information processing</topic><topic>Intelligent sensors</topic><topic>labeling</topic><topic>Machine intelligence</topic><topic>Problem-solving</topic><topic>Psychology</topic><topic>Sensor networked environment</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamei, K.</creatorcontrib><creatorcontrib>Yanagisawa, Y.</creatorcontrib><creatorcontrib>Maekawa, T.</creatorcontrib><creatorcontrib>Kishino, Y.</creatorcontrib><creatorcontrib>Sakurai, Y.</creatorcontrib><creatorcontrib>Okadome, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamei, K.</au><au>Yanagisawa, Y.</au><au>Maekawa, T.</au><au>Kishino, Y.</au><au>Sakurai, Y.</au><au>Okadome, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Labeling-based knowledge construction for real-world event understanding</atitle><btitle>2009 8th IEEE International Conference on Cognitive Informatics</btitle><stitle>COGINF</stitle><date>2009-06</date><risdate>2009</risdate><spage>116</spage><epage>124</epage><pages>116-124</pages><isbn>9781424446421</isbn><isbn>1424446422</isbn><abstract>A sensor networked environment is capable of observing real-world phenomena as sensor readings, however, there are difficulties in understanding real-world dasiaeventspsila such as activities of daily life occurring in the environment. We propose an incremental model for constructing real-world knowledge to allow us to understand real-world events. The central plank of the proposed model is the labeling practice. In the model, both the ontology of real-world events and the implementation of a sensor system are simultaneously improved based on a manually labeled event corpus. A labeling tool is developed in accordance with the model and event vocabularies are evaluated in a practical labeling experiment.</abstract><pub>IEEE</pub><doi>10.1109/COGINF.2009.5250792</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424446421
ispartof 2009 8th IEEE International Conference on Cognitive Informatics, 2009, p.116-124
issn
language eng
recordid cdi_ieee_primary_5250792
source IEEE Electronic Library (IEL) Conference Proceedings
subjects activities of daily life
Artificial intelligence
Cognition
Cognitive science
Computational modeling
event detection
event ontology
Humans
Information processing
Intelligent sensors
labeling
Machine intelligence
Problem-solving
Psychology
Sensor networked environment
title Labeling-based knowledge construction for real-world event understanding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Labeling-based%20knowledge%20construction%20for%20real-world%20event%20understanding&rft.btitle=2009%208th%20IEEE%20International%20Conference%20on%20Cognitive%20Informatics&rft.au=Kamei,%20K.&rft.date=2009-06&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.isbn=9781424446421&rft.isbn_list=1424446422&rft_id=info:doi/10.1109/COGINF.2009.5250792&rft_dat=%3Cieee_6IE%3E5250792%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3d164ba397a0e8cd7b4eabdaadc650ffe1d72d9d342e85ac098c7f2e0abc4d0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5250792&rfr_iscdi=true