Loading…
Recognizing deviants in Social Networking Sites: Case study fupei.com
In the last few years, social networking sites (SNSs) have grown rapidly as a new media used by people to create and maintain relationship. Ironically, social network sites are also used to do deviant behaviors, i.e. pornography, racism, predators, and fake profiles. A need then emerges to reduce th...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 512 |
container_issue | |
container_start_page | 507 |
container_title | |
container_volume | 2 |
creator | Yohannis, A.R. Sastramihardja, H. |
description | In the last few years, social networking sites (SNSs) have grown rapidly as a new media used by people to create and maintain relationship. Ironically, social network sites are also used to do deviant behaviors, i.e. pornography, racism, predators, and fake profiles. A need then emerges to reduce those deviances. This research tries to recognize the deviants based on their characteristics. Descriptive and inferensial statistics are used to seek out the differences between deviants and nondeviants on certain attributes. Analysis finds the deviants and nondeviants are significantly different on certain attributes and not on some attributes. Some of those findings confirm the theories of deviance. Based on the findings, several design implications are proposed. A social control system then issued in order to reduce deviances in SNS. |
doi_str_mv | 10.1109/ICEEI.2009.5254685 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5254685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5254685</ieee_id><sourcerecordid>5254685</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-83c37db2455de558949e4bce547594ee593e5e7e13a7799110ee6d7443cefcd03</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhScqiYC8gG7mBVrn5962151pqjYhmgh7Uqa3ZBRawhQNPr0Qiauz-HK-5BwhbrWKtVZ0X-ZFUcZGKYrRICQZXoih0YhRkll1KUYaDACQttnVPzBmIEanDqlEk7oWkxA-lFJHYUIGhqJ4Z9etWv_j25Ws-ctXbR-kb-Wsc75ay1fuv7vd54nOfM_hQeZVYBn6fX2QzX7LPnbd5kYMmmodeHLOsZg_FfP8JZq-PZf54zTypPoos86m9dIAYs2IGQExLB0jpEjAjGQZOWVtqzQlOq5mTuoUwDpuXK3sWNz9aT0zL7Y7v6l2h8X5DfsL5eJPEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognizing deviants in Social Networking Sites: Case study fupei.com</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yohannis, A.R. ; Sastramihardja, H.</creator><creatorcontrib>Yohannis, A.R. ; Sastramihardja, H.</creatorcontrib><description>In the last few years, social networking sites (SNSs) have grown rapidly as a new media used by people to create and maintain relationship. Ironically, social network sites are also used to do deviant behaviors, i.e. pornography, racism, predators, and fake profiles. A need then emerges to reduce those deviances. This research tries to recognize the deviants based on their characteristics. Descriptive and inferensial statistics are used to seek out the differences between deviants and nondeviants on certain attributes. Analysis finds the deviants and nondeviants are significantly different on certain attributes and not on some attributes. Some of those findings confirm the theories of deviance. Based on the findings, several design implications are proposed. A social control system then issued in order to reduce deviances in SNS.</description><identifier>ISSN: 2155-6822</identifier><identifier>ISBN: 1424449138</identifier><identifier>ISBN: 9781424449132</identifier><identifier>EISSN: 2155-6830</identifier><identifier>DOI: 10.1109/ICEEI.2009.5254685</identifier><identifier>LCCN: 2009906190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communities ; Correlation ; Data mining ; deviance ; deviant characteristics ; Information services ; Internet ; Social network services ; social networking sites ; Web sites</subject><ispartof>2009 International Conference on Electrical Engineering and Informatics, 2009, Vol.2, p.507-512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5254685$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5254685$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yohannis, A.R.</creatorcontrib><creatorcontrib>Sastramihardja, H.</creatorcontrib><title>Recognizing deviants in Social Networking Sites: Case study fupei.com</title><title>2009 International Conference on Electrical Engineering and Informatics</title><addtitle>ICEEI</addtitle><description>In the last few years, social networking sites (SNSs) have grown rapidly as a new media used by people to create and maintain relationship. Ironically, social network sites are also used to do deviant behaviors, i.e. pornography, racism, predators, and fake profiles. A need then emerges to reduce those deviances. This research tries to recognize the deviants based on their characteristics. Descriptive and inferensial statistics are used to seek out the differences between deviants and nondeviants on certain attributes. Analysis finds the deviants and nondeviants are significantly different on certain attributes and not on some attributes. Some of those findings confirm the theories of deviance. Based on the findings, several design implications are proposed. A social control system then issued in order to reduce deviances in SNS.</description><subject>Communities</subject><subject>Correlation</subject><subject>Data mining</subject><subject>deviance</subject><subject>deviant characteristics</subject><subject>Information services</subject><subject>Internet</subject><subject>Social network services</subject><subject>social networking sites</subject><subject>Web sites</subject><issn>2155-6822</issn><issn>2155-6830</issn><isbn>1424449138</isbn><isbn>9781424449132</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kM1OwkAUhScqiYC8gG7mBVrn5962151pqjYhmgh7Uqa3ZBRawhQNPr0Qiauz-HK-5BwhbrWKtVZ0X-ZFUcZGKYrRICQZXoih0YhRkll1KUYaDACQttnVPzBmIEanDqlEk7oWkxA-lFJHYUIGhqJ4Z9etWv_j25Ws-ctXbR-kb-Wsc75ay1fuv7vd54nOfM_hQeZVYBn6fX2QzX7LPnbd5kYMmmodeHLOsZg_FfP8JZq-PZf54zTypPoos86m9dIAYs2IGQExLB0jpEjAjGQZOWVtqzQlOq5mTuoUwDpuXK3sWNz9aT0zL7Y7v6l2h8X5DfsL5eJPEA</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Yohannis, A.R.</creator><creator>Sastramihardja, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Recognizing deviants in Social Networking Sites: Case study fupei.com</title><author>Yohannis, A.R. ; Sastramihardja, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-83c37db2455de558949e4bce547594ee593e5e7e13a7799110ee6d7443cefcd03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Communities</topic><topic>Correlation</topic><topic>Data mining</topic><topic>deviance</topic><topic>deviant characteristics</topic><topic>Information services</topic><topic>Internet</topic><topic>Social network services</topic><topic>social networking sites</topic><topic>Web sites</topic><toplevel>online_resources</toplevel><creatorcontrib>Yohannis, A.R.</creatorcontrib><creatorcontrib>Sastramihardja, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yohannis, A.R.</au><au>Sastramihardja, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognizing deviants in Social Networking Sites: Case study fupei.com</atitle><btitle>2009 International Conference on Electrical Engineering and Informatics</btitle><stitle>ICEEI</stitle><date>2009-08</date><risdate>2009</risdate><volume>2</volume><spage>507</spage><epage>512</epage><pages>507-512</pages><issn>2155-6822</issn><eissn>2155-6830</eissn><isbn>1424449138</isbn><isbn>9781424449132</isbn><abstract>In the last few years, social networking sites (SNSs) have grown rapidly as a new media used by people to create and maintain relationship. Ironically, social network sites are also used to do deviant behaviors, i.e. pornography, racism, predators, and fake profiles. A need then emerges to reduce those deviances. This research tries to recognize the deviants based on their characteristics. Descriptive and inferensial statistics are used to seek out the differences between deviants and nondeviants on certain attributes. Analysis finds the deviants and nondeviants are significantly different on certain attributes and not on some attributes. Some of those findings confirm the theories of deviance. Based on the findings, several design implications are proposed. A social control system then issued in order to reduce deviances in SNS.</abstract><pub>IEEE</pub><doi>10.1109/ICEEI.2009.5254685</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-6822 |
ispartof | 2009 International Conference on Electrical Engineering and Informatics, 2009, Vol.2, p.507-512 |
issn | 2155-6822 2155-6830 |
language | eng |
recordid | cdi_ieee_primary_5254685 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communities Correlation Data mining deviance deviant characteristics Information services Internet Social network services social networking sites Web sites |
title | Recognizing deviants in Social Networking Sites: Case study fupei.com |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognizing%20deviants%20in%20Social%20Networking%20Sites:%20Case%20study%20fupei.com&rft.btitle=2009%20International%20Conference%20on%20Electrical%20Engineering%20and%20Informatics&rft.au=Yohannis,%20A.R.&rft.date=2009-08&rft.volume=2&rft.spage=507&rft.epage=512&rft.pages=507-512&rft.issn=2155-6822&rft.eissn=2155-6830&rft.isbn=1424449138&rft.isbn_list=9781424449132&rft_id=info:doi/10.1109/ICEEI.2009.5254685&rft_dat=%3Cieee_6IE%3E5254685%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-83c37db2455de558949e4bce547594ee593e5e7e13a7799110ee6d7443cefcd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5254685&rfr_iscdi=true |