Loading…
Inverse rate-dependent prandtl-ishlinskii model for hysteresis nonlinearities compensation
Inverse of the rate-dependent Prandtl-Ishlinskii model is proposed to compensate rate-dependent hysteresis effects in smart actuators. The rate-dependent hysteresis properties of a piezoceramic actuator were characterized using the rate-dependent play operators and a dynamic density function. The in...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inverse of the rate-dependent Prandtl-Ishlinskii model is proposed to compensate rate-dependent hysteresis effects in smart actuators. The rate-dependent hysteresis properties of a piezoceramic actuator were characterized using the rate-dependent play operators and a dynamic density function. The inverse model is subsequently obtained analytically from the rate-dependent play operators and a dynamic density function. The effectiveness of the analytical inverse is demonstrated by its implementation as a feed-forward compensator to mitigate the rate-dependent hysteresis effects over a wide frequency range of actuator input. The proposed model resulted in exact inversion and thus could be quite attractive for compensating the hysteresis effects of smart actuators in real-time applications. |
---|---|
ISSN: | 2161-8151 2161-816X |
DOI: | 10.1109/ICAL.2009.5262967 |