Loading…

Relative evaluation of partition algorithms for complex networks

Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estim...

Full description

Saved in:
Bibliographic Details
Main Authors: Orman, G.K., Labatut, V.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 25
container_issue
container_start_page 20
container_title
container_volume
creator Orman, G.K.
Labatut, V.
description Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.
doi_str_mv 10.1109/NDT.2009.5272078
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5272078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5272078</ieee_id><sourcerecordid>5272078</sourcerecordid><originalsourceid>FETCH-LOGICAL-h251t-96b8b83a95bba3262ab7921552c2a0d0748152c353fca0fe5ec79ac5bdd82b4e3</originalsourceid><addsrcrecordid>eNpFUFtLwzAYjejAbe5d8CV_oPXLl6RJ3pQ5LzAUZD6PpE1dtV1KWqf-ezsd-HQucA6HQ8g5g5QxMJePN6sUAUwqUSEofUQmTKAQImNSHv8LoU7IGAcv0Qr1iEz2IQMCMzgls657AwCOwEXGx-Tq2de2r3ae-p2tPwYatjSUtLWxr36FrV9DrPpN09EyRJqHpq39F936_jPE9-6MjEpbd352wCl5uV2s5vfJ8unuYX69TDYoWZ-YzGmnuTXSOcsxQ-uU2Y_EHC0UoIRmA-eSl7mF0kufK2Nz6YpCoxOeT8nFX2_lvV-3sWps_F4fruA_vSxOhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Relative evaluation of partition algorithms for complex networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Orman, G.K. ; Labatut, V.</creator><creatorcontrib>Orman, G.K. ; Labatut, V.</creatorcontrib><description>Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.</description><identifier>ISSN: 2155-8728</identifier><identifier>ISBN: 1424446147</identifier><identifier>ISBN: 9781424446148</identifier><identifier>EISBN: 1424446155</identifier><identifier>EISBN: 9781424446155</identifier><identifier>DOI: 10.1109/NDT.2009.5272078</identifier><identifier>LCCN: 2009904260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Biology ; Clustering algorithms ; Complex networks ; Computer science ; Detection algorithms ; Mutual information ; Partitioning algorithms ; Physics ; Testing</subject><ispartof>2009 First International Conference on Networked Digital Technologies, 2009, p.20-25</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5272078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5272078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Orman, G.K.</creatorcontrib><creatorcontrib>Labatut, V.</creatorcontrib><title>Relative evaluation of partition algorithms for complex networks</title><title>2009 First International Conference on Networked Digital Technologies</title><addtitle>NDT</addtitle><description>Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.</description><subject>Application software</subject><subject>Biology</subject><subject>Clustering algorithms</subject><subject>Complex networks</subject><subject>Computer science</subject><subject>Detection algorithms</subject><subject>Mutual information</subject><subject>Partitioning algorithms</subject><subject>Physics</subject><subject>Testing</subject><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><isbn>1424446155</isbn><isbn>9781424446155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUFtLwzAYjejAbe5d8CV_oPXLl6RJ3pQ5LzAUZD6PpE1dtV1KWqf-ezsd-HQucA6HQ8g5g5QxMJePN6sUAUwqUSEofUQmTKAQImNSHv8LoU7IGAcv0Qr1iEz2IQMCMzgls657AwCOwEXGx-Tq2de2r3ae-p2tPwYatjSUtLWxr36FrV9DrPpN09EyRJqHpq39F936_jPE9-6MjEpbd352wCl5uV2s5vfJ8unuYX69TDYoWZ-YzGmnuTXSOcsxQ-uU2Y_EHC0UoIRmA-eSl7mF0kufK2Nz6YpCoxOeT8nFX2_lvV-3sWps_F4fruA_vSxOhQ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Orman, G.K.</creator><creator>Labatut, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Relative evaluation of partition algorithms for complex networks</title><author>Orman, G.K. ; Labatut, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h251t-96b8b83a95bba3262ab7921552c2a0d0748152c353fca0fe5ec79ac5bdd82b4e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Biology</topic><topic>Clustering algorithms</topic><topic>Complex networks</topic><topic>Computer science</topic><topic>Detection algorithms</topic><topic>Mutual information</topic><topic>Partitioning algorithms</topic><topic>Physics</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Orman, G.K.</creatorcontrib><creatorcontrib>Labatut, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orman, G.K.</au><au>Labatut, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Relative evaluation of partition algorithms for complex networks</atitle><btitle>2009 First International Conference on Networked Digital Technologies</btitle><stitle>NDT</stitle><date>2009-07</date><risdate>2009</risdate><spage>20</spage><epage>25</epage><pages>20-25</pages><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><eisbn>1424446155</eisbn><eisbn>9781424446155</eisbn><abstract>Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.</abstract><pub>IEEE</pub><doi>10.1109/NDT.2009.5272078</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-8728
ispartof 2009 First International Conference on Networked Digital Technologies, 2009, p.20-25
issn 2155-8728
language eng
recordid cdi_ieee_primary_5272078
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Biology
Clustering algorithms
Complex networks
Computer science
Detection algorithms
Mutual information
Partitioning algorithms
Physics
Testing
title Relative evaluation of partition algorithms for complex networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Relative%20evaluation%20of%20partition%20algorithms%20for%20complex%20networks&rft.btitle=2009%20First%20International%20Conference%20on%20Networked%20Digital%20Technologies&rft.au=Orman,%20G.K.&rft.date=2009-07&rft.spage=20&rft.epage=25&rft.pages=20-25&rft.issn=2155-8728&rft.isbn=1424446147&rft.isbn_list=9781424446148&rft_id=info:doi/10.1109/NDT.2009.5272078&rft.eisbn=1424446155&rft.eisbn_list=9781424446155&rft_dat=%3Cieee_6IE%3E5272078%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h251t-96b8b83a95bba3262ab7921552c2a0d0748152c353fca0fe5ec79ac5bdd82b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5272078&rfr_iscdi=true