Loading…
Relative evaluation of partition algorithms for complex networks
Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estim...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 25 |
container_issue | |
container_start_page | 20 |
container_title | |
container_volume | |
creator | Orman, G.K. Labatut, V. |
description | Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity. |
doi_str_mv | 10.1109/NDT.2009.5272078 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5272078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5272078</ieee_id><sourcerecordid>5272078</sourcerecordid><originalsourceid>FETCH-LOGICAL-h251t-96b8b83a95bba3262ab7921552c2a0d0748152c353fca0fe5ec79ac5bdd82b4e3</originalsourceid><addsrcrecordid>eNpFUFtLwzAYjejAbe5d8CV_oPXLl6RJ3pQ5LzAUZD6PpE1dtV1KWqf-ezsd-HQucA6HQ8g5g5QxMJePN6sUAUwqUSEofUQmTKAQImNSHv8LoU7IGAcv0Qr1iEz2IQMCMzgls657AwCOwEXGx-Tq2de2r3ae-p2tPwYatjSUtLWxr36FrV9DrPpN09EyRJqHpq39F936_jPE9-6MjEpbd352wCl5uV2s5vfJ8unuYX69TDYoWZ-YzGmnuTXSOcsxQ-uU2Y_EHC0UoIRmA-eSl7mF0kufK2Nz6YpCoxOeT8nFX2_lvV-3sWps_F4fruA_vSxOhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Relative evaluation of partition algorithms for complex networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Orman, G.K. ; Labatut, V.</creator><creatorcontrib>Orman, G.K. ; Labatut, V.</creatorcontrib><description>Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.</description><identifier>ISSN: 2155-8728</identifier><identifier>ISBN: 1424446147</identifier><identifier>ISBN: 9781424446148</identifier><identifier>EISBN: 1424446155</identifier><identifier>EISBN: 9781424446155</identifier><identifier>DOI: 10.1109/NDT.2009.5272078</identifier><identifier>LCCN: 2009904260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Biology ; Clustering algorithms ; Complex networks ; Computer science ; Detection algorithms ; Mutual information ; Partitioning algorithms ; Physics ; Testing</subject><ispartof>2009 First International Conference on Networked Digital Technologies, 2009, p.20-25</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5272078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5272078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Orman, G.K.</creatorcontrib><creatorcontrib>Labatut, V.</creatorcontrib><title>Relative evaluation of partition algorithms for complex networks</title><title>2009 First International Conference on Networked Digital Technologies</title><addtitle>NDT</addtitle><description>Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.</description><subject>Application software</subject><subject>Biology</subject><subject>Clustering algorithms</subject><subject>Complex networks</subject><subject>Computer science</subject><subject>Detection algorithms</subject><subject>Mutual information</subject><subject>Partitioning algorithms</subject><subject>Physics</subject><subject>Testing</subject><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><isbn>1424446155</isbn><isbn>9781424446155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUFtLwzAYjejAbe5d8CV_oPXLl6RJ3pQ5LzAUZD6PpE1dtV1KWqf-ezsd-HQucA6HQ8g5g5QxMJePN6sUAUwqUSEofUQmTKAQImNSHv8LoU7IGAcv0Qr1iEz2IQMCMzgls657AwCOwEXGx-Tq2de2r3ae-p2tPwYatjSUtLWxr36FrV9DrPpN09EyRJqHpq39F936_jPE9-6MjEpbd352wCl5uV2s5vfJ8unuYX69TDYoWZ-YzGmnuTXSOcsxQ-uU2Y_EHC0UoIRmA-eSl7mF0kufK2Nz6YpCoxOeT8nFX2_lvV-3sWps_F4fruA_vSxOhQ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Orman, G.K.</creator><creator>Labatut, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Relative evaluation of partition algorithms for complex networks</title><author>Orman, G.K. ; Labatut, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h251t-96b8b83a95bba3262ab7921552c2a0d0748152c353fca0fe5ec79ac5bdd82b4e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Application software</topic><topic>Biology</topic><topic>Clustering algorithms</topic><topic>Complex networks</topic><topic>Computer science</topic><topic>Detection algorithms</topic><topic>Mutual information</topic><topic>Partitioning algorithms</topic><topic>Physics</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Orman, G.K.</creatorcontrib><creatorcontrib>Labatut, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orman, G.K.</au><au>Labatut, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Relative evaluation of partition algorithms for complex networks</atitle><btitle>2009 First International Conference on Networked Digital Technologies</btitle><stitle>NDT</stitle><date>2009-07</date><risdate>2009</risdate><spage>20</spage><epage>25</epage><pages>20-25</pages><issn>2155-8728</issn><isbn>1424446147</isbn><isbn>9781424446148</isbn><eisbn>1424446155</eisbn><eisbn>9781424446155</eisbn><abstract>Complex networks partitioning consists in identifying denser groups of nodes. This popular research topic has applications in many fields such as biology, social sciences and physics. This led to many different partition algorithms, most of them based on Newman's modularity measure, which estimates the quality of a partition. Until now, these algorithms were tested only on a few real networks or unrealistic artificial ones. In this work, we use the more realistic generative model developed by Lancichinetti et al. to compare seven algorithms: Edge-betweenness, Eigenvector, Fast Greedy, Label Propagation, Markov Clustering, Spinglass and Walktrap. We used normalized mutual information (NMI) to assess their performances. Our results show Spinglass and Walktrap are above the others in terms of quality, while Markov Clustering and Edge-Betweenness also achieve good performance. Additionally, we compared NMI and modularity and observed they are not necessarily related: some algorithms produce better partitions while getting lower modularity.</abstract><pub>IEEE</pub><doi>10.1109/NDT.2009.5272078</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-8728 |
ispartof | 2009 First International Conference on Networked Digital Technologies, 2009, p.20-25 |
issn | 2155-8728 |
language | eng |
recordid | cdi_ieee_primary_5272078 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Biology Clustering algorithms Complex networks Computer science Detection algorithms Mutual information Partitioning algorithms Physics Testing |
title | Relative evaluation of partition algorithms for complex networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Relative%20evaluation%20of%20partition%20algorithms%20for%20complex%20networks&rft.btitle=2009%20First%20International%20Conference%20on%20Networked%20Digital%20Technologies&rft.au=Orman,%20G.K.&rft.date=2009-07&rft.spage=20&rft.epage=25&rft.pages=20-25&rft.issn=2155-8728&rft.isbn=1424446147&rft.isbn_list=9781424446148&rft_id=info:doi/10.1109/NDT.2009.5272078&rft.eisbn=1424446155&rft.eisbn_list=9781424446155&rft_dat=%3Cieee_6IE%3E5272078%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h251t-96b8b83a95bba3262ab7921552c2a0d0748152c353fca0fe5ec79ac5bdd82b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5272078&rfr_iscdi=true |