Loading…
Statistical software debugging: From bug predictors to the main causes of failure
Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, man...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 807 |
container_issue | |
container_start_page | 802 |
container_title | |
container_volume | |
creator | Parsa, S. Vahidi-Asl, M. Naree, S.A. Minaei-Bidgoli, B. |
description | Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach. |
doi_str_mv | 10.1109/ICADIWT.2009.5273934 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5273934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5273934</ieee_id><sourcerecordid>5273934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-38cefcecec50a0ef9b1b993738891d09536d3a87248de5adf347ad90b81faada3</originalsourceid><addsrcrecordid>eNpVUMFKAzEUjEhBrf0CPeQHWpN9SZN4k2q1UBCx4rG83bzUSNstSRbx712xF2cOw8AwMMPYtRQTKYW7Wczu7hfvq0klhJvoyoADdcJGzlipKtVDG3n6z0_VgF38xp0AaadnbJTzp-ihdAVgztnLa8ESc4kNbnluQ_nCRNxT3W02cb-55fPU7njv-CGRj01pU-al5eWD-A7jnjfYZcq8DTxg3HaJLtkg4DbT6KhD9jZ_WM2exsvnx37Achyl0WUMtqHQUE8tUFBwtaydAwPWOumF0zD1gNZUynrS6AMog96J2sqA6BGG7OqvNxLR-pDiDtP3-vgK_ABiIVVG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical software debugging: From bug predictors to the main causes of failure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Parsa, S. ; Vahidi-Asl, M. ; Naree, S.A. ; Minaei-Bidgoli, B.</creator><creatorcontrib>Parsa, S. ; Vahidi-Asl, M. ; Naree, S.A. ; Minaei-Bidgoli, B.</creatorcontrib><description>Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.</description><identifier>ISBN: 9781424444564</identifier><identifier>ISBN: 142444456X</identifier><identifier>EISBN: 9781424444571</identifier><identifier>EISBN: 1424444578</identifier><identifier>DOI: 10.1109/ICADIWT.2009.5273934</identifier><identifier>LCCN: 2009903186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer bugs ; Computer errors ; Decision making ; Instruments ; Programming ; Runtime ; Software debugging ; Software measurement ; Statistical analysis ; Testing</subject><ispartof>2009 Second International Conference on the Applications of Digital Information and Web Technologies, 2009, p.802-807</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5273934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5273934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parsa, S.</creatorcontrib><creatorcontrib>Vahidi-Asl, M.</creatorcontrib><creatorcontrib>Naree, S.A.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><title>Statistical software debugging: From bug predictors to the main causes of failure</title><title>2009 Second International Conference on the Applications of Digital Information and Web Technologies</title><addtitle>ICADIWT</addtitle><description>Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.</description><subject>Computer bugs</subject><subject>Computer errors</subject><subject>Decision making</subject><subject>Instruments</subject><subject>Programming</subject><subject>Runtime</subject><subject>Software debugging</subject><subject>Software measurement</subject><subject>Statistical analysis</subject><subject>Testing</subject><isbn>9781424444564</isbn><isbn>142444456X</isbn><isbn>9781424444571</isbn><isbn>1424444578</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMFKAzEUjEhBrf0CPeQHWpN9SZN4k2q1UBCx4rG83bzUSNstSRbx712xF2cOw8AwMMPYtRQTKYW7Wczu7hfvq0klhJvoyoADdcJGzlipKtVDG3n6z0_VgF38xp0AaadnbJTzp-ihdAVgztnLa8ESc4kNbnluQ_nCRNxT3W02cb-55fPU7njv-CGRj01pU-al5eWD-A7jnjfYZcq8DTxg3HaJLtkg4DbT6KhD9jZ_WM2exsvnx37Achyl0WUMtqHQUE8tUFBwtaydAwPWOumF0zD1gNZUynrS6AMog96J2sqA6BGG7OqvNxLR-pDiDtP3-vgK_ABiIVVG</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Parsa, S.</creator><creator>Vahidi-Asl, M.</creator><creator>Naree, S.A.</creator><creator>Minaei-Bidgoli, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Statistical software debugging: From bug predictors to the main causes of failure</title><author>Parsa, S. ; Vahidi-Asl, M. ; Naree, S.A. ; Minaei-Bidgoli, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-38cefcecec50a0ef9b1b993738891d09536d3a87248de5adf347ad90b81faada3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer bugs</topic><topic>Computer errors</topic><topic>Decision making</topic><topic>Instruments</topic><topic>Programming</topic><topic>Runtime</topic><topic>Software debugging</topic><topic>Software measurement</topic><topic>Statistical analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Parsa, S.</creatorcontrib><creatorcontrib>Vahidi-Asl, M.</creatorcontrib><creatorcontrib>Naree, S.A.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parsa, S.</au><au>Vahidi-Asl, M.</au><au>Naree, S.A.</au><au>Minaei-Bidgoli, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical software debugging: From bug predictors to the main causes of failure</atitle><btitle>2009 Second International Conference on the Applications of Digital Information and Web Technologies</btitle><stitle>ICADIWT</stitle><date>2009-08</date><risdate>2009</risdate><spage>802</spage><epage>807</epage><pages>802-807</pages><isbn>9781424444564</isbn><isbn>142444456X</isbn><eisbn>9781424444571</eisbn><eisbn>1424444578</eisbn><abstract>Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ICADIWT.2009.5273934</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424444564 |
ispartof | 2009 Second International Conference on the Applications of Digital Information and Web Technologies, 2009, p.802-807 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5273934 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer bugs Computer errors Decision making Instruments Programming Runtime Software debugging Software measurement Statistical analysis Testing |
title | Statistical software debugging: From bug predictors to the main causes of failure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20software%20debugging:%20From%20bug%20predictors%20to%20the%20main%20causes%20of%20failure&rft.btitle=2009%20Second%20International%20Conference%20on%20the%20Applications%20of%20Digital%20Information%20and%20Web%20Technologies&rft.au=Parsa,%20S.&rft.date=2009-08&rft.spage=802&rft.epage=807&rft.pages=802-807&rft.isbn=9781424444564&rft.isbn_list=142444456X&rft_id=info:doi/10.1109/ICADIWT.2009.5273934&rft.eisbn=9781424444571&rft.eisbn_list=1424444578&rft_dat=%3Cieee_6IE%3E5273934%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-38cefcecec50a0ef9b1b993738891d09536d3a87248de5adf347ad90b81faada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5273934&rfr_iscdi=true |