Loading…

Statistical software debugging: From bug predictors to the main causes of failure

Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, man...

Full description

Saved in:
Bibliographic Details
Main Authors: Parsa, S., Vahidi-Asl, M., Naree, S.A., Minaei-Bidgoli, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 807
container_issue
container_start_page 802
container_title
container_volume
creator Parsa, S.
Vahidi-Asl, M.
Naree, S.A.
Minaei-Bidgoli, B.
description Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.
doi_str_mv 10.1109/ICADIWT.2009.5273934
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5273934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5273934</ieee_id><sourcerecordid>5273934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-38cefcecec50a0ef9b1b993738891d09536d3a87248de5adf347ad90b81faada3</originalsourceid><addsrcrecordid>eNpVUMFKAzEUjEhBrf0CPeQHWpN9SZN4k2q1UBCx4rG83bzUSNstSRbx712xF2cOw8AwMMPYtRQTKYW7Wczu7hfvq0klhJvoyoADdcJGzlipKtVDG3n6z0_VgF38xp0AaadnbJTzp-ihdAVgztnLa8ESc4kNbnluQ_nCRNxT3W02cb-55fPU7njv-CGRj01pU-al5eWD-A7jnjfYZcq8DTxg3HaJLtkg4DbT6KhD9jZ_WM2exsvnx37Achyl0WUMtqHQUE8tUFBwtaydAwPWOumF0zD1gNZUynrS6AMog96J2sqA6BGG7OqvNxLR-pDiDtP3-vgK_ABiIVVG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical software debugging: From bug predictors to the main causes of failure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Parsa, S. ; Vahidi-Asl, M. ; Naree, S.A. ; Minaei-Bidgoli, B.</creator><creatorcontrib>Parsa, S. ; Vahidi-Asl, M. ; Naree, S.A. ; Minaei-Bidgoli, B.</creatorcontrib><description>Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.</description><identifier>ISBN: 9781424444564</identifier><identifier>ISBN: 142444456X</identifier><identifier>EISBN: 9781424444571</identifier><identifier>EISBN: 1424444578</identifier><identifier>DOI: 10.1109/ICADIWT.2009.5273934</identifier><identifier>LCCN: 2009903186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer bugs ; Computer errors ; Decision making ; Instruments ; Programming ; Runtime ; Software debugging ; Software measurement ; Statistical analysis ; Testing</subject><ispartof>2009 Second International Conference on the Applications of Digital Information and Web Technologies, 2009, p.802-807</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5273934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5273934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parsa, S.</creatorcontrib><creatorcontrib>Vahidi-Asl, M.</creatorcontrib><creatorcontrib>Naree, S.A.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><title>Statistical software debugging: From bug predictors to the main causes of failure</title><title>2009 Second International Conference on the Applications of Digital Information and Web Technologies</title><addtitle>ICADIWT</addtitle><description>Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.</description><subject>Computer bugs</subject><subject>Computer errors</subject><subject>Decision making</subject><subject>Instruments</subject><subject>Programming</subject><subject>Runtime</subject><subject>Software debugging</subject><subject>Software measurement</subject><subject>Statistical analysis</subject><subject>Testing</subject><isbn>9781424444564</isbn><isbn>142444456X</isbn><isbn>9781424444571</isbn><isbn>1424444578</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMFKAzEUjEhBrf0CPeQHWpN9SZN4k2q1UBCx4rG83bzUSNstSRbx712xF2cOw8AwMMPYtRQTKYW7Wczu7hfvq0klhJvoyoADdcJGzlipKtVDG3n6z0_VgF38xp0AaadnbJTzp-ihdAVgztnLa8ESc4kNbnluQ_nCRNxT3W02cb-55fPU7njv-CGRj01pU-al5eWD-A7jnjfYZcq8DTxg3HaJLtkg4DbT6KhD9jZ_WM2exsvnx37Achyl0WUMtqHQUE8tUFBwtaydAwPWOumF0zD1gNZUynrS6AMog96J2sqA6BGG7OqvNxLR-pDiDtP3-vgK_ABiIVVG</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Parsa, S.</creator><creator>Vahidi-Asl, M.</creator><creator>Naree, S.A.</creator><creator>Minaei-Bidgoli, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Statistical software debugging: From bug predictors to the main causes of failure</title><author>Parsa, S. ; Vahidi-Asl, M. ; Naree, S.A. ; Minaei-Bidgoli, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-38cefcecec50a0ef9b1b993738891d09536d3a87248de5adf347ad90b81faada3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer bugs</topic><topic>Computer errors</topic><topic>Decision making</topic><topic>Instruments</topic><topic>Programming</topic><topic>Runtime</topic><topic>Software debugging</topic><topic>Software measurement</topic><topic>Statistical analysis</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Parsa, S.</creatorcontrib><creatorcontrib>Vahidi-Asl, M.</creatorcontrib><creatorcontrib>Naree, S.A.</creatorcontrib><creatorcontrib>Minaei-Bidgoli, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parsa, S.</au><au>Vahidi-Asl, M.</au><au>Naree, S.A.</au><au>Minaei-Bidgoli, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical software debugging: From bug predictors to the main causes of failure</atitle><btitle>2009 Second International Conference on the Applications of Digital Information and Web Technologies</btitle><stitle>ICADIWT</stitle><date>2009-08</date><risdate>2009</risdate><spage>802</spage><epage>807</epage><pages>802-807</pages><isbn>9781424444564</isbn><isbn>142444456X</isbn><eisbn>9781424444571</eisbn><eisbn>1424444578</eisbn><abstract>Detecting latent errors is a key challenging issue in the software testing process. Latent errors could be best detected by bug predictors. A bug predictor manifests the effect of a bug on the program execution state. The aim has been to find the smallest reasonable subset of the bug predictors, manifesting all possible bugs within a program. In this paper, a new algorithm for finding the smallest subset of bug predictors is presented. The algorithm, firstly, applies a LASSO method to detect program predicates which have relatively higher effect on the termination status of the program. Then, a ridge regression method is applied to select a subset of the detected predicates as independent representatives of all the program predicates. Program control and data dependency graphs can be best applied to find the causes of bugs represented by the selected bug predictors. Our proposed approach has been evaluated on two well-known test suites. The experimental results demonstrate the effectiveness and accuracy of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ICADIWT.2009.5273934</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424444564
ispartof 2009 Second International Conference on the Applications of Digital Information and Web Technologies, 2009, p.802-807
issn
language eng
recordid cdi_ieee_primary_5273934
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer bugs
Computer errors
Decision making
Instruments
Programming
Runtime
Software debugging
Software measurement
Statistical analysis
Testing
title Statistical software debugging: From bug predictors to the main causes of failure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20software%20debugging:%20From%20bug%20predictors%20to%20the%20main%20causes%20of%20failure&rft.btitle=2009%20Second%20International%20Conference%20on%20the%20Applications%20of%20Digital%20Information%20and%20Web%20Technologies&rft.au=Parsa,%20S.&rft.date=2009-08&rft.spage=802&rft.epage=807&rft.pages=802-807&rft.isbn=9781424444564&rft.isbn_list=142444456X&rft_id=info:doi/10.1109/ICADIWT.2009.5273934&rft.eisbn=9781424444571&rft.eisbn_list=1424444578&rft_dat=%3Cieee_6IE%3E5273934%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-38cefcecec50a0ef9b1b993738891d09536d3a87248de5adf347ad90b81faada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5273934&rfr_iscdi=true