Loading…

Inductive Logic Programming for Symbol Recognition

In this paper, we make an attempt to use inductive logic programming (ILP) to automatically learn non trivial descriptions of symbols, based on a formal description. This work is a first step in this direction and is rather a proof of concept, rather than a fully operational and robust framework. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Santosh, K.C., Lamiroy, B., Ropers, J.-P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1334
container_issue
container_start_page 1330
container_title
container_volume
creator Santosh, K.C.
Lamiroy, B.
Ropers, J.-P.
description In this paper, we make an attempt to use inductive logic programming (ILP) to automatically learn non trivial descriptions of symbols, based on a formal description. This work is a first step in this direction and is rather a proof of concept, rather than a fully operational and robust framework. The overall goal of our approach is to express graphic symbols by a number of primitives that may be of any complexity (i.e. not necessarily just lines or points) and connecting relationships that can be deduced from straightforward state-of-the art image treatment and analysis tools. This representation is then used as an input to an ILP solver, in order to deduce non obvious characteristics that may lead to a more semantic related recognition process.
doi_str_mv 10.1109/ICDAR.2009.166
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5277729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5277729</ieee_id><sourcerecordid>5277729</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1666-bc1af3868cf5eb7e7814abb988d1efff2ba9449b92e14b85a8e6a459cc57d8ce3</originalsourceid><addsrcrecordid>eNotzrtOwzAUgGFzk0hLVxaWvEDC8d1nrEKBSJFABebKduxg1CQoKUh9e5Bg-rdPPyHXFEpKAW_r6m69LRkAllSpE7JCbUArlFwzyU5JxrjGglEBZ2RBBRNCSAA4JxmVDArJFb8ki3n-AKCIqDLC6qH98of0HfJm7JLPn6exm2zfp6HL4zjlL8fejft8G_zYDemQxuGKXES7n8Pqv0vydr95rR6L5umhrtZN8f77pgrnqY3cKOOjDE4HbaiwzqExLQ0xRuYsCoEOWaDCGWlNUFZI9F7q1vjAl-Tmz00hhN3nlHo7HXeSaa0Z8h8YZki7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inductive Logic Programming for Symbol Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santosh, K.C. ; Lamiroy, B. ; Ropers, J.-P.</creator><creatorcontrib>Santosh, K.C. ; Lamiroy, B. ; Ropers, J.-P.</creatorcontrib><description>In this paper, we make an attempt to use inductive logic programming (ILP) to automatically learn non trivial descriptions of symbols, based on a formal description. This work is a first step in this direction and is rather a proof of concept, rather than a fully operational and robust framework. The overall goal of our approach is to express graphic symbols by a number of primitives that may be of any complexity (i.e. not necessarily just lines or points) and connecting relationships that can be deduced from straightforward state-of-the art image treatment and analysis tools. This representation is then used as an input to an ILP solver, in order to deduce non obvious characteristics that may lead to a more semantic related recognition process.</description><identifier>ISSN: 1520-5363</identifier><identifier>ISBN: 1424445000</identifier><identifier>ISBN: 9781424445004</identifier><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9780769537252</identifier><identifier>EISBN: 0769537251</identifier><identifier>DOI: 10.1109/ICDAR.2009.166</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; Data mining ; Electronic mail ; Graphics ; Image analysis ; inductive logic programming ; Joining processes ; Logic programming ; Robustness ; symbol recognition ; Text analysis ; Vocabulary</subject><ispartof>2009 10th International Conference on Document Analysis and Recognition, 2009, p.1330-1334</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5277729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5277729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santosh, K.C.</creatorcontrib><creatorcontrib>Lamiroy, B.</creatorcontrib><creatorcontrib>Ropers, J.-P.</creatorcontrib><title>Inductive Logic Programming for Symbol Recognition</title><title>2009 10th International Conference on Document Analysis and Recognition</title><addtitle>ICDAR</addtitle><description>In this paper, we make an attempt to use inductive logic programming (ILP) to automatically learn non trivial descriptions of symbols, based on a formal description. This work is a first step in this direction and is rather a proof of concept, rather than a fully operational and robust framework. The overall goal of our approach is to express graphic symbols by a number of primitives that may be of any complexity (i.e. not necessarily just lines or points) and connecting relationships that can be deduced from straightforward state-of-the art image treatment and analysis tools. This representation is then used as an input to an ILP solver, in order to deduce non obvious characteristics that may lead to a more semantic related recognition process.</description><subject>classification</subject><subject>Data mining</subject><subject>Electronic mail</subject><subject>Graphics</subject><subject>Image analysis</subject><subject>inductive logic programming</subject><subject>Joining processes</subject><subject>Logic programming</subject><subject>Robustness</subject><subject>symbol recognition</subject><subject>Text analysis</subject><subject>Vocabulary</subject><issn>1520-5363</issn><issn>2379-2140</issn><isbn>1424445000</isbn><isbn>9781424445004</isbn><isbn>9780769537252</isbn><isbn>0769537251</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzrtOwzAUgGFzk0hLVxaWvEDC8d1nrEKBSJFABebKduxg1CQoKUh9e5Bg-rdPPyHXFEpKAW_r6m69LRkAllSpE7JCbUArlFwzyU5JxrjGglEBZ2RBBRNCSAA4JxmVDArJFb8ki3n-AKCIqDLC6qH98of0HfJm7JLPn6exm2zfp6HL4zjlL8fejft8G_zYDemQxuGKXES7n8Pqv0vydr95rR6L5umhrtZN8f77pgrnqY3cKOOjDE4HbaiwzqExLQ0xRuYsCoEOWaDCGWlNUFZI9F7q1vjAl-Tmz00hhN3nlHo7HXeSaa0Z8h8YZki7</recordid><startdate>20090726</startdate><enddate>20090726</enddate><creator>Santosh, K.C.</creator><creator>Lamiroy, B.</creator><creator>Ropers, J.-P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090726</creationdate><title>Inductive Logic Programming for Symbol Recognition</title><author>Santosh, K.C. ; Lamiroy, B. ; Ropers, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1666-bc1af3868cf5eb7e7814abb988d1efff2ba9449b92e14b85a8e6a459cc57d8ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>classification</topic><topic>Data mining</topic><topic>Electronic mail</topic><topic>Graphics</topic><topic>Image analysis</topic><topic>inductive logic programming</topic><topic>Joining processes</topic><topic>Logic programming</topic><topic>Robustness</topic><topic>symbol recognition</topic><topic>Text analysis</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Santosh, K.C.</creatorcontrib><creatorcontrib>Lamiroy, B.</creatorcontrib><creatorcontrib>Ropers, J.-P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santosh, K.C.</au><au>Lamiroy, B.</au><au>Ropers, J.-P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inductive Logic Programming for Symbol Recognition</atitle><btitle>2009 10th International Conference on Document Analysis and Recognition</btitle><stitle>ICDAR</stitle><date>2009-07-26</date><risdate>2009</risdate><spage>1330</spage><epage>1334</epage><pages>1330-1334</pages><issn>1520-5363</issn><eissn>2379-2140</eissn><isbn>1424445000</isbn><isbn>9781424445004</isbn><eisbn>9780769537252</eisbn><eisbn>0769537251</eisbn><abstract>In this paper, we make an attempt to use inductive logic programming (ILP) to automatically learn non trivial descriptions of symbols, based on a formal description. This work is a first step in this direction and is rather a proof of concept, rather than a fully operational and robust framework. The overall goal of our approach is to express graphic symbols by a number of primitives that may be of any complexity (i.e. not necessarily just lines or points) and connecting relationships that can be deduced from straightforward state-of-the art image treatment and analysis tools. This representation is then used as an input to an ILP solver, in order to deduce non obvious characteristics that may lead to a more semantic related recognition process.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2009.166</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-5363
ispartof 2009 10th International Conference on Document Analysis and Recognition, 2009, p.1330-1334
issn 1520-5363
2379-2140
language eng
recordid cdi_ieee_primary_5277729
source IEEE Electronic Library (IEL) Conference Proceedings
subjects classification
Data mining
Electronic mail
Graphics
Image analysis
inductive logic programming
Joining processes
Logic programming
Robustness
symbol recognition
Text analysis
Vocabulary
title Inductive Logic Programming for Symbol Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T08%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inductive%20Logic%20Programming%20for%20Symbol%20Recognition&rft.btitle=2009%2010th%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition&rft.au=Santosh,%20K.C.&rft.date=2009-07-26&rft.spage=1330&rft.epage=1334&rft.pages=1330-1334&rft.issn=1520-5363&rft.eissn=2379-2140&rft.isbn=1424445000&rft.isbn_list=9781424445004&rft_id=info:doi/10.1109/ICDAR.2009.166&rft.eisbn=9780769537252&rft.eisbn_list=0769537251&rft_dat=%3Cieee_6IE%3E5277729%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h1666-bc1af3868cf5eb7e7814abb988d1efff2ba9449b92e14b85a8e6a459cc57d8ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5277729&rfr_iscdi=true