Loading…

Wind power short-term forecasting system

The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibil...

Full description

Saved in:
Bibliographic Details
Main Authors: Dica, C., Dica, C.-I., Vasiliu, D., Comanescu, G., Ungureanu, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Dica, C.
Dica, C.-I.
Vasiliu, D.
Comanescu, G.
Ungureanu, M.
description The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.
doi_str_mv 10.1109/PTC.2009.5281941
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5281941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5281941</ieee_id><sourcerecordid>5281941</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8de80dce473f875978a6eeb7faf7ad343ca168fae5fbb784f1d50b88632c79b13</originalsourceid><addsrcrecordid>eNpVj01LAzEURSMiKHX2gptZuplpXj4myVIGtYWCLgZclmTy0kacTkkC0n9vwW68m8vZ3MMl5AFoC0DN8mPoW0apaSXTYARckcooDYIJwRiX6vofC3pLqpy_6DlCcujMHXn6jAdfH-cfTHXez6k0BdNUhznhaHOJh12dT7ngdE9ugv3OWF16QYbXl6FfNZv3t3X_vGmioaXRHjX1IwrFg1byLLcdolPBBmU9F3y00OlgUQbnlBYBvKRO646zURkHfEEe_2YjIm6PKU42nbaXe_wXeeBCww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wind power short-term forecasting system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dica, C. ; Dica, C.-I. ; Vasiliu, D. ; Comanescu, G. ; Ungureanu, M.</creator><creatorcontrib>Dica, C. ; Dica, C.-I. ; Vasiliu, D. ; Comanescu, G. ; Ungureanu, M.</creatorcontrib><description>The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.</description><identifier>ISBN: 9781424422340</identifier><identifier>ISBN: 1424422345</identifier><identifier>EISBN: 9781424422357</identifier><identifier>EISBN: 1424422353</identifier><identifier>DOI: 10.1109/PTC.2009.5281941</identifier><language>eng</language><publisher>IEEE</publisher><subject>Economic forecasting ; Forecasting ; Network operating systems ; Power generation ; Power generation economics ; Power system economics ; Power system modeling ; Prediction methods ; Predictive models ; Weather forecasting ; Wind energy ; Wind energy generation ; Wind forecasting ; Wind power generation</subject><ispartof>2009 IEEE Bucharest PowerTech, 2009, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5281941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5281941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dica, C.</creatorcontrib><creatorcontrib>Dica, C.-I.</creatorcontrib><creatorcontrib>Vasiliu, D.</creatorcontrib><creatorcontrib>Comanescu, G.</creatorcontrib><creatorcontrib>Ungureanu, M.</creatorcontrib><title>Wind power short-term forecasting system</title><title>2009 IEEE Bucharest PowerTech</title><addtitle>PTC</addtitle><description>The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.</description><subject>Economic forecasting</subject><subject>Forecasting</subject><subject>Network operating systems</subject><subject>Power generation</subject><subject>Power generation economics</subject><subject>Power system economics</subject><subject>Power system modeling</subject><subject>Prediction methods</subject><subject>Predictive models</subject><subject>Weather forecasting</subject><subject>Wind energy</subject><subject>Wind energy generation</subject><subject>Wind forecasting</subject><subject>Wind power generation</subject><isbn>9781424422340</isbn><isbn>1424422345</isbn><isbn>9781424422357</isbn><isbn>1424422353</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj01LAzEURSMiKHX2gptZuplpXj4myVIGtYWCLgZclmTy0kacTkkC0n9vwW68m8vZ3MMl5AFoC0DN8mPoW0apaSXTYARckcooDYIJwRiX6vofC3pLqpy_6DlCcujMHXn6jAdfH-cfTHXez6k0BdNUhznhaHOJh12dT7ngdE9ugv3OWF16QYbXl6FfNZv3t3X_vGmioaXRHjX1IwrFg1byLLcdolPBBmU9F3y00OlgUQbnlBYBvKRO646zURkHfEEe_2YjIm6PKU42nbaXe_wXeeBCww</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Dica, C.</creator><creator>Dica, C.-I.</creator><creator>Vasiliu, D.</creator><creator>Comanescu, G.</creator><creator>Ungureanu, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Wind power short-term forecasting system</title><author>Dica, C. ; Dica, C.-I. ; Vasiliu, D. ; Comanescu, G. ; Ungureanu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8de80dce473f875978a6eeb7faf7ad343ca168fae5fbb784f1d50b88632c79b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Economic forecasting</topic><topic>Forecasting</topic><topic>Network operating systems</topic><topic>Power generation</topic><topic>Power generation economics</topic><topic>Power system economics</topic><topic>Power system modeling</topic><topic>Prediction methods</topic><topic>Predictive models</topic><topic>Weather forecasting</topic><topic>Wind energy</topic><topic>Wind energy generation</topic><topic>Wind forecasting</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Dica, C.</creatorcontrib><creatorcontrib>Dica, C.-I.</creatorcontrib><creatorcontrib>Vasiliu, D.</creatorcontrib><creatorcontrib>Comanescu, G.</creatorcontrib><creatorcontrib>Ungureanu, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dica, C.</au><au>Dica, C.-I.</au><au>Vasiliu, D.</au><au>Comanescu, G.</au><au>Ungureanu, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wind power short-term forecasting system</atitle><btitle>2009 IEEE Bucharest PowerTech</btitle><stitle>PTC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781424422340</isbn><isbn>1424422345</isbn><eisbn>9781424422357</eisbn><eisbn>1424422353</eisbn><abstract>The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.</abstract><pub>IEEE</pub><doi>10.1109/PTC.2009.5281941</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424422340
ispartof 2009 IEEE Bucharest PowerTech, 2009, p.1-7
issn
language eng
recordid cdi_ieee_primary_5281941
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Economic forecasting
Forecasting
Network operating systems
Power generation
Power generation economics
Power system economics
Power system modeling
Prediction methods
Predictive models
Weather forecasting
Wind energy
Wind energy generation
Wind forecasting
Wind power generation
title Wind power short-term forecasting system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wind%20power%20short-term%20forecasting%20system&rft.btitle=2009%20IEEE%20Bucharest%20PowerTech&rft.au=Dica,%20C.&rft.date=2009-06&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781424422340&rft.isbn_list=1424422345&rft_id=info:doi/10.1109/PTC.2009.5281941&rft.eisbn=9781424422357&rft.eisbn_list=1424422353&rft_dat=%3Cieee_6IE%3E5281941%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8de80dce473f875978a6eeb7faf7ad343ca168fae5fbb784f1d50b88632c79b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5281941&rfr_iscdi=true