Loading…
Wind power short-term forecasting system
The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibil...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Dica, C. Dica, C.-I. Vasiliu, D. Comanescu, G. Ungureanu, M. |
description | The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point. |
doi_str_mv | 10.1109/PTC.2009.5281941 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5281941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5281941</ieee_id><sourcerecordid>5281941</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8de80dce473f875978a6eeb7faf7ad343ca168fae5fbb784f1d50b88632c79b13</originalsourceid><addsrcrecordid>eNpVj01LAzEURSMiKHX2gptZuplpXj4myVIGtYWCLgZclmTy0kacTkkC0n9vwW68m8vZ3MMl5AFoC0DN8mPoW0apaSXTYARckcooDYIJwRiX6vofC3pLqpy_6DlCcujMHXn6jAdfH-cfTHXez6k0BdNUhznhaHOJh12dT7ngdE9ugv3OWF16QYbXl6FfNZv3t3X_vGmioaXRHjX1IwrFg1byLLcdolPBBmU9F3y00OlgUQbnlBYBvKRO646zURkHfEEe_2YjIm6PKU42nbaXe_wXeeBCww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Wind power short-term forecasting system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dica, C. ; Dica, C.-I. ; Vasiliu, D. ; Comanescu, G. ; Ungureanu, M.</creator><creatorcontrib>Dica, C. ; Dica, C.-I. ; Vasiliu, D. ; Comanescu, G. ; Ungureanu, M.</creatorcontrib><description>The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.</description><identifier>ISBN: 9781424422340</identifier><identifier>ISBN: 1424422345</identifier><identifier>EISBN: 9781424422357</identifier><identifier>EISBN: 1424422353</identifier><identifier>DOI: 10.1109/PTC.2009.5281941</identifier><language>eng</language><publisher>IEEE</publisher><subject>Economic forecasting ; Forecasting ; Network operating systems ; Power generation ; Power generation economics ; Power system economics ; Power system modeling ; Prediction methods ; Predictive models ; Weather forecasting ; Wind energy ; Wind energy generation ; Wind forecasting ; Wind power generation</subject><ispartof>2009 IEEE Bucharest PowerTech, 2009, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5281941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5281941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dica, C.</creatorcontrib><creatorcontrib>Dica, C.-I.</creatorcontrib><creatorcontrib>Vasiliu, D.</creatorcontrib><creatorcontrib>Comanescu, G.</creatorcontrib><creatorcontrib>Ungureanu, M.</creatorcontrib><title>Wind power short-term forecasting system</title><title>2009 IEEE Bucharest PowerTech</title><addtitle>PTC</addtitle><description>The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.</description><subject>Economic forecasting</subject><subject>Forecasting</subject><subject>Network operating systems</subject><subject>Power generation</subject><subject>Power generation economics</subject><subject>Power system economics</subject><subject>Power system modeling</subject><subject>Prediction methods</subject><subject>Predictive models</subject><subject>Weather forecasting</subject><subject>Wind energy</subject><subject>Wind energy generation</subject><subject>Wind forecasting</subject><subject>Wind power generation</subject><isbn>9781424422340</isbn><isbn>1424422345</isbn><isbn>9781424422357</isbn><isbn>1424422353</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj01LAzEURSMiKHX2gptZuplpXj4myVIGtYWCLgZclmTy0kacTkkC0n9vwW68m8vZ3MMl5AFoC0DN8mPoW0apaSXTYARckcooDYIJwRiX6vofC3pLqpy_6DlCcujMHXn6jAdfH-cfTHXez6k0BdNUhznhaHOJh12dT7ngdE9ugv3OWF16QYbXl6FfNZv3t3X_vGmioaXRHjX1IwrFg1byLLcdolPBBmU9F3y00OlgUQbnlBYBvKRO646zURkHfEEe_2YjIm6PKU42nbaXe_wXeeBCww</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Dica, C.</creator><creator>Dica, C.-I.</creator><creator>Vasiliu, D.</creator><creator>Comanescu, G.</creator><creator>Ungureanu, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Wind power short-term forecasting system</title><author>Dica, C. ; Dica, C.-I. ; Vasiliu, D. ; Comanescu, G. ; Ungureanu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8de80dce473f875978a6eeb7faf7ad343ca168fae5fbb784f1d50b88632c79b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Economic forecasting</topic><topic>Forecasting</topic><topic>Network operating systems</topic><topic>Power generation</topic><topic>Power generation economics</topic><topic>Power system economics</topic><topic>Power system modeling</topic><topic>Prediction methods</topic><topic>Predictive models</topic><topic>Weather forecasting</topic><topic>Wind energy</topic><topic>Wind energy generation</topic><topic>Wind forecasting</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Dica, C.</creatorcontrib><creatorcontrib>Dica, C.-I.</creatorcontrib><creatorcontrib>Vasiliu, D.</creatorcontrib><creatorcontrib>Comanescu, G.</creatorcontrib><creatorcontrib>Ungureanu, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dica, C.</au><au>Dica, C.-I.</au><au>Vasiliu, D.</au><au>Comanescu, G.</au><au>Ungureanu, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Wind power short-term forecasting system</atitle><btitle>2009 IEEE Bucharest PowerTech</btitle><stitle>PTC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781424422340</isbn><isbn>1424422345</isbn><eisbn>9781424422357</eisbn><eisbn>1424422353</eisbn><abstract>The Romanian National Energy strategy is requesting that renewables quota to reach 33% of consumption in 2010 and 38% in 2020. One of the most challenging issues facing wind energy today is its maximal and reliable integration in the power markets. Due to transport/distribution grid lack of flexibility and high level of concentration in Dobrogea region of large wind developments the access to the grid in Romania is proving difficult. This paper explores the role of short-term forecasting of wind power in Dobrogea for the successful integration of large wind farm capacity (over 2,000 MW) into a single injection point.</abstract><pub>IEEE</pub><doi>10.1109/PTC.2009.5281941</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424422340 |
ispartof | 2009 IEEE Bucharest PowerTech, 2009, p.1-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5281941 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Economic forecasting Forecasting Network operating systems Power generation Power generation economics Power system economics Power system modeling Prediction methods Predictive models Weather forecasting Wind energy Wind energy generation Wind forecasting Wind power generation |
title | Wind power short-term forecasting system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Wind%20power%20short-term%20forecasting%20system&rft.btitle=2009%20IEEE%20Bucharest%20PowerTech&rft.au=Dica,%20C.&rft.date=2009-06&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781424422340&rft.isbn_list=1424422345&rft_id=info:doi/10.1109/PTC.2009.5281941&rft.eisbn=9781424422357&rft.eisbn_list=1424422353&rft_dat=%3Cieee_6IE%3E5281941%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8de80dce473f875978a6eeb7faf7ad343ca168fae5fbb784f1d50b88632c79b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5281941&rfr_iscdi=true |