Loading…
No-Limit Texas Hold'em Poker agents created with evolutionary neural networks
In order for computer poker agents to play the game well, they must analyse their current quality despite imperfect information, predict the likelihood of future game states dependent upon random outcomes, model opponents who are deliberately trying to mislead them, and manage finances to improve th...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 131 |
container_issue | |
container_start_page | 125 |
container_title | |
container_volume | |
creator | Nicolai, G. Hilderman, R.J. |
description | In order for computer poker agents to play the game well, they must analyse their current quality despite imperfect information, predict the likelihood of future game states dependent upon random outcomes, model opponents who are deliberately trying to mislead them, and manage finances to improve their current condition. This leads to a game space that is large compared to other classic games such as chess and backgammon. Evolutionary methods have been shown to find relatively good results in large state spaces, and neural networks have been shown to be able to find solutions to non-linear search problems such as poker. In this paper, we develop no-limit texas hold'em poker agents using a hybrid method known as evolving neural networks. We also investigate the appropriateness of evolving these agents using evolutionary heuristics such as co-evolution and halls of fame. Our agents were experimentally evaluated against several benchmark agents as well as agents previously developed in other work. Experimental results show the overall best performance was obtained by an agent evolved from a single population (i.e., no co-evolution) using a large hall of fame. These results demonstrate an effective use of evolving neural networks to create competitive no-limit texas hold'em poker agents. |
doi_str_mv | 10.1109/CIG.2009.5286485 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5286485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5286485</ieee_id><sourcerecordid>5286485</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a0c5e3b1ffa84de7ee0868e5016c7c91f1020fe73b6119fcac986b7c55cf59b43</originalsourceid><addsrcrecordid>eNo1kD1PwzAURY2gEm3JjsTijSnh2bETe0QRtJXCx5CBrXKcZzBNGpS4FP49RZTp6A736ugScskgYQz0TbFaJBxAJ5KrTCh5QiKdKya4EEIxqU_J7D-IlzMy5SmXseA5TMjst6dBCp2dk2gc3wEgZUqpTE3Jw2Mfl77zgVb4ZUa67NvmGjv63G9woOYVt2GkdkATsKF7H94ofvbtLvh-a4ZvusXdYNoDwr4fNuMFmTjTjhgdOSfV_V1VLOPyabEqbsvYawixASsxrZlzRokGc0Q4uKAEltncauYYcHCYp3XGmHbWWK2yOrdSWid1LdI5ufqb9Yi4_hh8d3BZH59JfwCa7lNu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>No-Limit Texas Hold'em Poker agents created with evolutionary neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nicolai, G. ; Hilderman, R.J.</creator><creatorcontrib>Nicolai, G. ; Hilderman, R.J.</creatorcontrib><description>In order for computer poker agents to play the game well, they must analyse their current quality despite imperfect information, predict the likelihood of future game states dependent upon random outcomes, model opponents who are deliberately trying to mislead them, and manage finances to improve their current condition. This leads to a game space that is large compared to other classic games such as chess and backgammon. Evolutionary methods have been shown to find relatively good results in large state spaces, and neural networks have been shown to be able to find solutions to non-linear search problems such as poker. In this paper, we develop no-limit texas hold'em poker agents using a hybrid method known as evolving neural networks. We also investigate the appropriateness of evolving these agents using evolutionary heuristics such as co-evolution and halls of fame. Our agents were experimentally evaluated against several benchmark agents as well as agents previously developed in other work. Experimental results show the overall best performance was obtained by an agent evolved from a single population (i.e., no co-evolution) using a large hall of fame. These results demonstrate an effective use of evolving neural networks to create competitive no-limit texas hold'em poker agents.</description><identifier>ISSN: 2325-4270</identifier><identifier>ISBN: 142444814X</identifier><identifier>ISBN: 9781424448142</identifier><identifier>EISBN: 9781424448159</identifier><identifier>EISBN: 1424448158</identifier><identifier>DOI: 10.1109/CIG.2009.5286485</identifier><identifier>LCCN: 2009905496</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer network management ; Computer networks ; Financial management ; Humans ; Information analysis ; Neural networks ; Predictive models ; Quality management ; State-space methods</subject><ispartof>2009 IEEE Symposium on Computational Intelligence and Games, 2009, p.125-131</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5286485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5286485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nicolai, G.</creatorcontrib><creatorcontrib>Hilderman, R.J.</creatorcontrib><title>No-Limit Texas Hold'em Poker agents created with evolutionary neural networks</title><title>2009 IEEE Symposium on Computational Intelligence and Games</title><addtitle>CIG</addtitle><description>In order for computer poker agents to play the game well, they must analyse their current quality despite imperfect information, predict the likelihood of future game states dependent upon random outcomes, model opponents who are deliberately trying to mislead them, and manage finances to improve their current condition. This leads to a game space that is large compared to other classic games such as chess and backgammon. Evolutionary methods have been shown to find relatively good results in large state spaces, and neural networks have been shown to be able to find solutions to non-linear search problems such as poker. In this paper, we develop no-limit texas hold'em poker agents using a hybrid method known as evolving neural networks. We also investigate the appropriateness of evolving these agents using evolutionary heuristics such as co-evolution and halls of fame. Our agents were experimentally evaluated against several benchmark agents as well as agents previously developed in other work. Experimental results show the overall best performance was obtained by an agent evolved from a single population (i.e., no co-evolution) using a large hall of fame. These results demonstrate an effective use of evolving neural networks to create competitive no-limit texas hold'em poker agents.</description><subject>Artificial intelligence</subject><subject>Computer network management</subject><subject>Computer networks</subject><subject>Financial management</subject><subject>Humans</subject><subject>Information analysis</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Quality management</subject><subject>State-space methods</subject><issn>2325-4270</issn><isbn>142444814X</isbn><isbn>9781424448142</isbn><isbn>9781424448159</isbn><isbn>1424448158</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAURY2gEm3JjsTijSnh2bETe0QRtJXCx5CBrXKcZzBNGpS4FP49RZTp6A736ugScskgYQz0TbFaJBxAJ5KrTCh5QiKdKya4EEIxqU_J7D-IlzMy5SmXseA5TMjst6dBCp2dk2gc3wEgZUqpTE3Jw2Mfl77zgVb4ZUa67NvmGjv63G9woOYVt2GkdkATsKF7H94ofvbtLvh-a4ZvusXdYNoDwr4fNuMFmTjTjhgdOSfV_V1VLOPyabEqbsvYawixASsxrZlzRokGc0Q4uKAEltncauYYcHCYp3XGmHbWWK2yOrdSWid1LdI5ufqb9Yi4_hh8d3BZH59JfwCa7lNu</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Nicolai, G.</creator><creator>Hilderman, R.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>No-Limit Texas Hold'em Poker agents created with evolutionary neural networks</title><author>Nicolai, G. ; Hilderman, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a0c5e3b1ffa84de7ee0868e5016c7c91f1020fe73b6119fcac986b7c55cf59b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Computer network management</topic><topic>Computer networks</topic><topic>Financial management</topic><topic>Humans</topic><topic>Information analysis</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Quality management</topic><topic>State-space methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Nicolai, G.</creatorcontrib><creatorcontrib>Hilderman, R.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nicolai, G.</au><au>Hilderman, R.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>No-Limit Texas Hold'em Poker agents created with evolutionary neural networks</atitle><btitle>2009 IEEE Symposium on Computational Intelligence and Games</btitle><stitle>CIG</stitle><date>2009-09</date><risdate>2009</risdate><spage>125</spage><epage>131</epage><pages>125-131</pages><issn>2325-4270</issn><isbn>142444814X</isbn><isbn>9781424448142</isbn><eisbn>9781424448159</eisbn><eisbn>1424448158</eisbn><abstract>In order for computer poker agents to play the game well, they must analyse their current quality despite imperfect information, predict the likelihood of future game states dependent upon random outcomes, model opponents who are deliberately trying to mislead them, and manage finances to improve their current condition. This leads to a game space that is large compared to other classic games such as chess and backgammon. Evolutionary methods have been shown to find relatively good results in large state spaces, and neural networks have been shown to be able to find solutions to non-linear search problems such as poker. In this paper, we develop no-limit texas hold'em poker agents using a hybrid method known as evolving neural networks. We also investigate the appropriateness of evolving these agents using evolutionary heuristics such as co-evolution and halls of fame. Our agents were experimentally evaluated against several benchmark agents as well as agents previously developed in other work. Experimental results show the overall best performance was obtained by an agent evolved from a single population (i.e., no co-evolution) using a large hall of fame. These results demonstrate an effective use of evolving neural networks to create competitive no-limit texas hold'em poker agents.</abstract><pub>IEEE</pub><doi>10.1109/CIG.2009.5286485</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-4270 |
ispartof | 2009 IEEE Symposium on Computational Intelligence and Games, 2009, p.125-131 |
issn | 2325-4270 |
language | eng |
recordid | cdi_ieee_primary_5286485 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Computer network management Computer networks Financial management Humans Information analysis Neural networks Predictive models Quality management State-space methods |
title | No-Limit Texas Hold'em Poker agents created with evolutionary neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T20%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=No-Limit%20Texas%20Hold'em%20Poker%20agents%20created%20with%20evolutionary%20neural%20networks&rft.btitle=2009%20IEEE%20Symposium%20on%20Computational%20Intelligence%20and%20Games&rft.au=Nicolai,%20G.&rft.date=2009-09&rft.spage=125&rft.epage=131&rft.pages=125-131&rft.issn=2325-4270&rft.isbn=142444814X&rft.isbn_list=9781424448142&rft_id=info:doi/10.1109/CIG.2009.5286485&rft.eisbn=9781424448159&rft.eisbn_list=1424448158&rft_dat=%3Cieee_6IE%3E5286485%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a0c5e3b1ffa84de7ee0868e5016c7c91f1020fe73b6119fcac986b7c55cf59b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5286485&rfr_iscdi=true |