Loading…
Stabilizing and Direction Control of Efficient 3-D Biped Walking Based on PDAC
This paper proposes a 3-D biped dynamic walking algorithm based on passive dynamic autonomous control (PDAC). The robot dynamics is modeled as an autonomous system of a 3-D inverted pendulum by applying the PDAC concept that is based on the assumption of point contact of the robot foot and the virtu...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2009-12, Vol.14 (6), p.712-718 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a 3-D biped dynamic walking algorithm based on passive dynamic autonomous control (PDAC). The robot dynamics is modeled as an autonomous system of a 3-D inverted pendulum by applying the PDAC concept that is based on the assumption of point contact of the robot foot and the virtual constraint as to robot joints. Due to autonomy, there are two conservative quantities named ldquoPDAC constant,rdquo which determine the velocity and direction of the biped walking. We also propose the convergence algorithm to make PDAC constants converge to arbitrary values, so that walking velocity and direction are controllable. Finally, experimental results validate the performance and the energy efficiency of the proposed algorithm. |
---|---|
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2009.2032777 |