Loading…

The Generalized Area Theorem and Some of its Consequences

There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidde...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2009-11, Vol.55 (11), p.4793-4821
Main Authors: Measson, C., Montanari, A., Richardson, T.J., Urbanke, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023
cites cdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023
container_end_page 4821
container_issue 11
container_start_page 4793
container_title IEEE transactions on information theory
container_volume 55
creator Measson, C.
Montanari, A.
Richardson, T.J.
Urbanke, R.
description There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.
doi_str_mv 10.1109/TIT.2009.2030457
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5290273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5290273</ieee_id><sourcerecordid>35052385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3wcsiqKet-Zrd5ChFa6HgwfUcsrsT3LLd1KQ96K83paUHD15mmJln3mFeQq4ZnTBG9WM1ryacUp2CoBLKEzJiAGWuC5CnZEQpU7mWUp2TixiXqZTA-Ijo6hOzGQ4YbN_9YJs9BbRZavqAq8wObfbuV5h5l3WbmE39EPFri0OD8ZKcOdtHvDrkMfl4ea6mr_nibTafPi3yRkq9ycE66YSsJect1kWhmJOtqKXSKJtCAQMhgNsaNNWirJWohXCixhYtgqVcjMnDXncdfDodN2bVxQb73g7ot9EoRYuCl7JM5P2_pAAKXChI4O0fcOm3YUhfGKZBC6YoSxDdQ03wMQZ0Zh26lQ3fhlGzs9wky83OcnOwPK3cHXRtbGzvgh2aLh73OGdQppC4mz3XIeJxDFxTXgrxC_v2hvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195931801</pqid></control><display><type>article</type><title>The Generalized Area Theorem and Some of its Consequences</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Measson, C. ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.</creator><creatorcontrib>Measson, C. ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.</creatorcontrib><description>There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2030457</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Area theorem ; Back propagation ; Belief propagation ; belief propagation (BP) ; Bridges ; Channels ; Coding, codes ; Data transmission ; Decoders ; Decoding ; Entropy ; Exact sciences and technology ; EXIT curve ; Graphs ; Information theory ; Information, signal and communications theory ; Iterative decoding ; maximum a posteriori ; Maximum likelihood decoding ; Maximum likelihood estimation ; maximum-likelihood ; Maxwell construction ; Memoryless systems ; Parity check codes ; phase transition ; Probability ; Signal and communications theory ; Telecommunications and information theory ; Theorems ; threshold ; Thresholds ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2009-11, Vol.55 (11), p.4793-4821</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</citedby><cites>FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5290273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22157221$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Measson, C.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.J.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><title>The Generalized Area Theorem and Some of its Consequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.</description><subject>Applied sciences</subject><subject>Area theorem</subject><subject>Back propagation</subject><subject>Belief propagation</subject><subject>belief propagation (BP)</subject><subject>Bridges</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Data transmission</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>EXIT curve</subject><subject>Graphs</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>maximum a posteriori</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood</subject><subject>Maxwell construction</subject><subject>Memoryless systems</subject><subject>Parity check codes</subject><subject>phase transition</subject><subject>Probability</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Theorems</subject><subject>threshold</subject><subject>Thresholds</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3wcsiqKet-Zrd5ChFa6HgwfUcsrsT3LLd1KQ96K83paUHD15mmJln3mFeQq4ZnTBG9WM1ryacUp2CoBLKEzJiAGWuC5CnZEQpU7mWUp2TixiXqZTA-Ijo6hOzGQ4YbN_9YJs9BbRZavqAq8wObfbuV5h5l3WbmE39EPFri0OD8ZKcOdtHvDrkMfl4ea6mr_nibTafPi3yRkq9ycE66YSsJect1kWhmJOtqKXSKJtCAQMhgNsaNNWirJWohXCixhYtgqVcjMnDXncdfDodN2bVxQb73g7ot9EoRYuCl7JM5P2_pAAKXChI4O0fcOm3YUhfGKZBC6YoSxDdQ03wMQZ0Zh26lQ3fhlGzs9wky83OcnOwPK3cHXRtbGzvgh2aLh73OGdQppC4mz3XIeJxDFxTXgrxC_v2hvM</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Measson, C.</creator><creator>Montanari, A.</creator><creator>Richardson, T.J.</creator><creator>Urbanke, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>The Generalized Area Theorem and Some of its Consequences</title><author>Measson, C. ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Area theorem</topic><topic>Back propagation</topic><topic>Belief propagation</topic><topic>belief propagation (BP)</topic><topic>Bridges</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Data transmission</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>EXIT curve</topic><topic>Graphs</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>maximum a posteriori</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood</topic><topic>Maxwell construction</topic><topic>Memoryless systems</topic><topic>Parity check codes</topic><topic>phase transition</topic><topic>Probability</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Theorems</topic><topic>threshold</topic><topic>Thresholds</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Measson, C.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.J.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Measson, C.</au><au>Montanari, A.</au><au>Richardson, T.J.</au><au>Urbanke, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Area Theorem and Some of its Consequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>55</volume><issue>11</issue><spage>4793</spage><epage>4821</epage><pages>4793-4821</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2030457</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-11, Vol.55 (11), p.4793-4821
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_5290273
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Area theorem
Back propagation
Belief propagation
belief propagation (BP)
Bridges
Channels
Coding, codes
Data transmission
Decoders
Decoding
Entropy
Exact sciences and technology
EXIT curve
Graphs
Information theory
Information, signal and communications theory
Iterative decoding
maximum a posteriori
Maximum likelihood decoding
Maximum likelihood estimation
maximum-likelihood
Maxwell construction
Memoryless systems
Parity check codes
phase transition
Probability
Signal and communications theory
Telecommunications and information theory
Theorems
threshold
Thresholds
Upper bound
title The Generalized Area Theorem and Some of its Consequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Area%20Theorem%20and%20Some%20of%20its%20Consequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Measson,%20C.&rft.date=2009-11-01&rft.volume=55&rft.issue=11&rft.spage=4793&rft.epage=4821&rft.pages=4793-4821&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2030457&rft_dat=%3Cproquest_ieee_%3E35052385%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195931801&rft_id=info:pmid/&rft_ieee_id=5290273&rfr_iscdi=true