Loading…
The Generalized Area Theorem and Some of its Consequences
There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidde...
Saved in:
Published in: | IEEE transactions on information theory 2009-11, Vol.55 (11), p.4793-4821 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023 |
container_end_page | 4821 |
container_issue | 11 |
container_start_page | 4793 |
container_title | IEEE transactions on information theory |
container_volume | 55 |
creator | Measson, C. Montanari, A. Richardson, T.J. Urbanke, R. |
description | There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel. |
doi_str_mv | 10.1109/TIT.2009.2030457 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5290273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5290273</ieee_id><sourcerecordid>35052385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3wcsiqKet-Zrd5ChFa6HgwfUcsrsT3LLd1KQ96K83paUHD15mmJln3mFeQq4ZnTBG9WM1ryacUp2CoBLKEzJiAGWuC5CnZEQpU7mWUp2TixiXqZTA-Ijo6hOzGQ4YbN_9YJs9BbRZavqAq8wObfbuV5h5l3WbmE39EPFri0OD8ZKcOdtHvDrkMfl4ea6mr_nibTafPi3yRkq9ycE66YSsJect1kWhmJOtqKXSKJtCAQMhgNsaNNWirJWohXCixhYtgqVcjMnDXncdfDodN2bVxQb73g7ot9EoRYuCl7JM5P2_pAAKXChI4O0fcOm3YUhfGKZBC6YoSxDdQ03wMQZ0Zh26lQ3fhlGzs9wky83OcnOwPK3cHXRtbGzvgh2aLh73OGdQppC4mz3XIeJxDFxTXgrxC_v2hvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195931801</pqid></control><display><type>article</type><title>The Generalized Area Theorem and Some of its Consequences</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Measson, C. ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.</creator><creatorcontrib>Measson, C. ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.</creatorcontrib><description>There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2030457</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Area theorem ; Back propagation ; Belief propagation ; belief propagation (BP) ; Bridges ; Channels ; Coding, codes ; Data transmission ; Decoders ; Decoding ; Entropy ; Exact sciences and technology ; EXIT curve ; Graphs ; Information theory ; Information, signal and communications theory ; Iterative decoding ; maximum a posteriori ; Maximum likelihood decoding ; Maximum likelihood estimation ; maximum-likelihood ; Maxwell construction ; Memoryless systems ; Parity check codes ; phase transition ; Probability ; Signal and communications theory ; Telecommunications and information theory ; Theorems ; threshold ; Thresholds ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2009-11, Vol.55 (11), p.4793-4821</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</citedby><cites>FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5290273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157221$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Measson, C.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.J.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><title>The Generalized Area Theorem and Some of its Consequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.</description><subject>Applied sciences</subject><subject>Area theorem</subject><subject>Back propagation</subject><subject>Belief propagation</subject><subject>belief propagation (BP)</subject><subject>Bridges</subject><subject>Channels</subject><subject>Coding, codes</subject><subject>Data transmission</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>EXIT curve</subject><subject>Graphs</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Iterative decoding</subject><subject>maximum a posteriori</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood</subject><subject>Maxwell construction</subject><subject>Memoryless systems</subject><subject>Parity check codes</subject><subject>phase transition</subject><subject>Probability</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Theorems</subject><subject>threshold</subject><subject>Thresholds</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3wcsiqKet-Zrd5ChFa6HgwfUcsrsT3LLd1KQ96K83paUHD15mmJln3mFeQq4ZnTBG9WM1ryacUp2CoBLKEzJiAGWuC5CnZEQpU7mWUp2TixiXqZTA-Ijo6hOzGQ4YbN_9YJs9BbRZavqAq8wObfbuV5h5l3WbmE39EPFri0OD8ZKcOdtHvDrkMfl4ea6mr_nibTafPi3yRkq9ycE66YSsJect1kWhmJOtqKXSKJtCAQMhgNsaNNWirJWohXCixhYtgqVcjMnDXncdfDodN2bVxQb73g7ot9EoRYuCl7JM5P2_pAAKXChI4O0fcOm3YUhfGKZBC6YoSxDdQ03wMQZ0Zh26lQ3fhlGzs9wky83OcnOwPK3cHXRtbGzvgh2aLh73OGdQppC4mz3XIeJxDFxTXgrxC_v2hvM</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Measson, C.</creator><creator>Montanari, A.</creator><creator>Richardson, T.J.</creator><creator>Urbanke, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>The Generalized Area Theorem and Some of its Consequences</title><author>Measson, C. ; Montanari, A. ; Richardson, T.J. ; Urbanke, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Area theorem</topic><topic>Back propagation</topic><topic>Belief propagation</topic><topic>belief propagation (BP)</topic><topic>Bridges</topic><topic>Channels</topic><topic>Coding, codes</topic><topic>Data transmission</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>EXIT curve</topic><topic>Graphs</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Iterative decoding</topic><topic>maximum a posteriori</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood</topic><topic>Maxwell construction</topic><topic>Memoryless systems</topic><topic>Parity check codes</topic><topic>phase transition</topic><topic>Probability</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Theorems</topic><topic>threshold</topic><topic>Thresholds</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Measson, C.</creatorcontrib><creatorcontrib>Montanari, A.</creatorcontrib><creatorcontrib>Richardson, T.J.</creatorcontrib><creatorcontrib>Urbanke, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Measson, C.</au><au>Montanari, A.</au><au>Richardson, T.J.</au><au>Urbanke, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Area Theorem and Some of its Consequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>55</volume><issue>11</issue><spage>4793</spage><epage>4821</epage><pages>4793-4821</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>There is a fundamental relationship between belief propagation (BP) and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper (C. MEacuteasson, A. Montanari, and R. Urbanke, "Maxwell's construction: The hidden bridge between iterative and maximum a posteriori decoding," IEEE Transactions on Information Theory , submitted for publication). This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the BP decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori probability (MAP) and the BP decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under BP decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2030457</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2009-11, Vol.55 (11), p.4793-4821 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_5290273 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Area theorem Back propagation Belief propagation belief propagation (BP) Bridges Channels Coding, codes Data transmission Decoders Decoding Entropy Exact sciences and technology EXIT curve Graphs Information theory Information, signal and communications theory Iterative decoding maximum a posteriori Maximum likelihood decoding Maximum likelihood estimation maximum-likelihood Maxwell construction Memoryless systems Parity check codes phase transition Probability Signal and communications theory Telecommunications and information theory Theorems threshold Thresholds Upper bound |
title | The Generalized Area Theorem and Some of its Consequences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Area%20Theorem%20and%20Some%20of%20its%20Consequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Measson,%20C.&rft.date=2009-11-01&rft.volume=55&rft.issue=11&rft.spage=4793&rft.epage=4821&rft.pages=4793-4821&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2030457&rft_dat=%3Cproquest_ieee_%3E35052385%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-5af4f34b422deb6681f4d3b489e4c685153352ab590937b83b33f3bedeae5a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195931801&rft_id=info:pmid/&rft_ieee_id=5290273&rfr_iscdi=true |