Loading…

Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation

Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial...

Full description

Saved in:
Bibliographic Details
Main Authors: Ding, Xing hao, Qian, Kun, Xiao, Quan, Liao, Ying hao, Guo, Dong hui, Wang, Shou jue
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator Ding, Xing hao
Qian, Kun
Xiao, Quan
Liao, Ying hao
Guo, Dong hui
Wang, Shou jue
description Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.
doi_str_mv 10.1109/CISP.2009.5301577
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5301577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5301577</ieee_id><sourcerecordid>5301577</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-26d765c7ca9735a96b9d95e998344497644150a10f795593aa2c3f2e14ea1b9e3</originalsourceid><addsrcrecordid>eNo9kN1qg0AQhbeUQJs0D1B6sy-g3R_X7Vwm0qSCkJLkXkYdy4JGUUnp23eloVfDMOd8zDmMPUsRSingNUlPn6ESAkKjhTTW3rGljFQURVJLc_-_KNALtpyFIKRW9oGtx9EVQsXGgLHmkeVZ9823buJHnIgnXdsP5CXdhXc132HpsOFpi1808i2OVHF_2VTYT-5K_HClIZg9DXnzqcdhJH6kGUGXCSePeWKLGpuR1re5Yufd-zn5CLLDPk02WeBATIGKKxub0pYIVhuEuIAKDAG8aR8DbOyzGIFS1Bb85xpRlbpWJCNCWQDpFXv5wzoiyvvBtTj85Ldy9C-tJFWE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ding, Xing hao ; Qian, Kun ; Xiao, Quan ; Liao, Ying hao ; Guo, Dong hui ; Wang, Shou jue</creator><creatorcontrib>Ding, Xing hao ; Qian, Kun ; Xiao, Quan ; Liao, Ying hao ; Guo, Dong hui ; Wang, Shou jue</creatorcontrib><description>Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5301577</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Bit rate ; Dictionaries ; Discrete cosine transforms ; Huffman coding ; Image coding ; Information science ; PSNR ; Transform coding ; Wavelet transforms</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5301577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5301577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Xing hao</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Xiao, Quan</creatorcontrib><creatorcontrib>Liao, Ying hao</creatorcontrib><creatorcontrib>Guo, Dong hui</creatorcontrib><creatorcontrib>Wang, Shou jue</creatorcontrib><title>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.</description><subject>Algorithm design and analysis</subject><subject>Bit rate</subject><subject>Dictionaries</subject><subject>Discrete cosine transforms</subject><subject>Huffman coding</subject><subject>Image coding</subject><subject>Information science</subject><subject>PSNR</subject><subject>Transform coding</subject><subject>Wavelet transforms</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1qg0AQhbeUQJs0D1B6sy-g3R_X7Vwm0qSCkJLkXkYdy4JGUUnp23eloVfDMOd8zDmMPUsRSingNUlPn6ESAkKjhTTW3rGljFQURVJLc_-_KNALtpyFIKRW9oGtx9EVQsXGgLHmkeVZ9823buJHnIgnXdsP5CXdhXc132HpsOFpi1808i2OVHF_2VTYT-5K_HClIZg9DXnzqcdhJH6kGUGXCSePeWKLGpuR1re5Yufd-zn5CLLDPk02WeBATIGKKxub0pYIVhuEuIAKDAG8aR8DbOyzGIFS1Bb85xpRlbpWJCNCWQDpFXv5wzoiyvvBtTj85Ldy9C-tJFWE</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Ding, Xing hao</creator><creator>Qian, Kun</creator><creator>Xiao, Quan</creator><creator>Liao, Ying hao</creator><creator>Guo, Dong hui</creator><creator>Wang, Shou jue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</title><author>Ding, Xing hao ; Qian, Kun ; Xiao, Quan ; Liao, Ying hao ; Guo, Dong hui ; Wang, Shou jue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-26d765c7ca9735a96b9d95e998344497644150a10f795593aa2c3f2e14ea1b9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Bit rate</topic><topic>Dictionaries</topic><topic>Discrete cosine transforms</topic><topic>Huffman coding</topic><topic>Image coding</topic><topic>Information science</topic><topic>PSNR</topic><topic>Transform coding</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xing hao</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Xiao, Quan</creatorcontrib><creatorcontrib>Liao, Ying hao</creatorcontrib><creatorcontrib>Guo, Dong hui</creatorcontrib><creatorcontrib>Wang, Shou jue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Xing hao</au><au>Qian, Kun</au><au>Xiao, Quan</au><au>Liao, Ying hao</au><au>Guo, Dong hui</au><au>Wang, Shou jue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5301577</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424441293
ispartof 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-3
issn
language eng
recordid cdi_ieee_primary_5301577
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Bit rate
Dictionaries
Discrete cosine transforms
Huffman coding
Image coding
Information science
PSNR
Transform coding
Wavelet transforms
title Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20Bit%20Rate%20Compression%20of%20Facial%20Images%20Based%20on%20Adaptive%20Over-Complete%20Sparse%20Representation&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Ding,%20Xing%20hao&rft.date=2009-10&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5301577&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&rft_dat=%3Cieee_6IE%3E5301577%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-26d765c7ca9735a96b9d95e998344497644150a10f795593aa2c3f2e14ea1b9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5301577&rfr_iscdi=true