Loading…
Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation
Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ding, Xing hao Qian, Kun Xiao, Quan Liao, Ying hao Guo, Dong hui Wang, Shou jue |
description | Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case. |
doi_str_mv | 10.1109/CISP.2009.5301577 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5301577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5301577</ieee_id><sourcerecordid>5301577</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-26d765c7ca9735a96b9d95e998344497644150a10f795593aa2c3f2e14ea1b9e3</originalsourceid><addsrcrecordid>eNo9kN1qg0AQhbeUQJs0D1B6sy-g3R_X7Vwm0qSCkJLkXkYdy4JGUUnp23eloVfDMOd8zDmMPUsRSingNUlPn6ESAkKjhTTW3rGljFQURVJLc_-_KNALtpyFIKRW9oGtx9EVQsXGgLHmkeVZ9823buJHnIgnXdsP5CXdhXc132HpsOFpi1808i2OVHF_2VTYT-5K_HClIZg9DXnzqcdhJH6kGUGXCSePeWKLGpuR1re5Yufd-zn5CLLDPk02WeBATIGKKxub0pYIVhuEuIAKDAG8aR8DbOyzGIFS1Bb85xpRlbpWJCNCWQDpFXv5wzoiyvvBtTj85Ldy9C-tJFWE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ding, Xing hao ; Qian, Kun ; Xiao, Quan ; Liao, Ying hao ; Guo, Dong hui ; Wang, Shou jue</creator><creatorcontrib>Ding, Xing hao ; Qian, Kun ; Xiao, Quan ; Liao, Ying hao ; Guo, Dong hui ; Wang, Shou jue</creatorcontrib><description>Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5301577</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Bit rate ; Dictionaries ; Discrete cosine transforms ; Huffman coding ; Image coding ; Information science ; PSNR ; Transform coding ; Wavelet transforms</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5301577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5301577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Xing hao</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Xiao, Quan</creatorcontrib><creatorcontrib>Liao, Ying hao</creatorcontrib><creatorcontrib>Guo, Dong hui</creatorcontrib><creatorcontrib>Wang, Shou jue</creatorcontrib><title>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.</description><subject>Algorithm design and analysis</subject><subject>Bit rate</subject><subject>Dictionaries</subject><subject>Discrete cosine transforms</subject><subject>Huffman coding</subject><subject>Image coding</subject><subject>Information science</subject><subject>PSNR</subject><subject>Transform coding</subject><subject>Wavelet transforms</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1qg0AQhbeUQJs0D1B6sy-g3R_X7Vwm0qSCkJLkXkYdy4JGUUnp23eloVfDMOd8zDmMPUsRSingNUlPn6ESAkKjhTTW3rGljFQURVJLc_-_KNALtpyFIKRW9oGtx9EVQsXGgLHmkeVZ9823buJHnIgnXdsP5CXdhXc132HpsOFpi1808i2OVHF_2VTYT-5K_HClIZg9DXnzqcdhJH6kGUGXCSePeWKLGpuR1re5Yufd-zn5CLLDPk02WeBATIGKKxub0pYIVhuEuIAKDAG8aR8DbOyzGIFS1Bb85xpRlbpWJCNCWQDpFXv5wzoiyvvBtTj85Ldy9C-tJFWE</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Ding, Xing hao</creator><creator>Qian, Kun</creator><creator>Xiao, Quan</creator><creator>Liao, Ying hao</creator><creator>Guo, Dong hui</creator><creator>Wang, Shou jue</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</title><author>Ding, Xing hao ; Qian, Kun ; Xiao, Quan ; Liao, Ying hao ; Guo, Dong hui ; Wang, Shou jue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-26d765c7ca9735a96b9d95e998344497644150a10f795593aa2c3f2e14ea1b9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Bit rate</topic><topic>Dictionaries</topic><topic>Discrete cosine transforms</topic><topic>Huffman coding</topic><topic>Image coding</topic><topic>Information science</topic><topic>PSNR</topic><topic>Transform coding</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xing hao</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Xiao, Quan</creatorcontrib><creatorcontrib>Liao, Ying hao</creatorcontrib><creatorcontrib>Guo, Dong hui</creatorcontrib><creatorcontrib>Wang, Shou jue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Xing hao</au><au>Qian, Kun</au><au>Xiao, Quan</au><au>Liao, Ying hao</au><au>Guo, Dong hui</au><au>Wang, Shou jue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>Among transform-based image compression methods, the sparsity of transform coefficients is very important for compression performance. To overcome the insufficiency of commonly used DCT and wavelet transform, we apply the theory of adaptive over-complete sparse representation to the filed of facial image compression. By using a novel dictionary design algorithm called K-LMS, which recently proposed by our group, we obtain the adaptive over-complete dictionary firstly. The facial image then can be achieved sparse decomposition by using the OMP algorithm over the obtained adaptive dictionary. Finally, we encode the sparse coefficients by use of the Huffman coding. The experimental results demonstrate that the proposed method is much better than JPEG and JPEG2000 in both objective performance and visual quality, especially in the low bit-rate case.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5301577</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424441293 |
ispartof | 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5301577 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Bit rate Dictionaries Discrete cosine transforms Huffman coding Image coding Information science PSNR Transform coding Wavelet transforms |
title | Low Bit Rate Compression of Facial Images Based on Adaptive Over-Complete Sparse Representation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20Bit%20Rate%20Compression%20of%20Facial%20Images%20Based%20on%20Adaptive%20Over-Complete%20Sparse%20Representation&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Ding,%20Xing%20hao&rft.date=2009-10&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5301577&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&rft_dat=%3Cieee_6IE%3E5301577%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-26d765c7ca9735a96b9d95e998344497644150a10f795593aa2c3f2e14ea1b9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5301577&rfr_iscdi=true |