Loading…

Natural Landmarks Extraction Method from Range Image for Mobile Robot

This article describes a natural landmarks detection method to use with conventional 2D laser rangefinders. The method consists of three main parts: data clustering, smoothing and segmentation. A smoothing algorithm within a scale space framework is introduced to smooth the range image. This is achi...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaowei Feng, Yongyi He, Wuxin Huang, Jian Yuan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Xiaowei Feng
Yongyi He
Wuxin Huang
Jian Yuan
description This article describes a natural landmarks detection method to use with conventional 2D laser rangefinders. The method consists of three main parts: data clustering, smoothing and segmentation. A smoothing algorithm within a scale space framework is introduced to smooth the range image. This is achieved by repeatedly convolving the scan data with an adaptive smoothing mask calculated according to the Mahalanobis distances from a curve-based estimator, which tracks the features using UKF (unscented Kalman filter). Clustered data is segmented and characterized by the curvature of the range data. This method is robust to noise, and can reliably detect landmarks in the unstructured environment. Experimental results show that the proposed method is efficient in natural-landmark extraction.
doi_str_mv 10.1109/CISP.2009.5303473
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5303473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5303473</ieee_id><sourcerecordid>5303473</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-41f7c3285f43b948ed21e4af6308dba8642a7670fa1b1f101c37fac76bc3b0b93</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhSMy0M39APElf6AzNzdpmkcp1Q06lbn3cdMmWmwbaSvov3fi8OUcDnwcDoexaxArAGFv883L80oKYVcaBSqDZ2wOSiqlAEGf_wdpccbmv6AVgNJcsOU4Nk7IVGurjb5kxSNNnwO1vKS-7mh4H3nxNQ1UTU3s-dZPb7HmYYgd31H_6vmmo6OGOPBtdE3r-S66OF2xWaB29MuTL9j-vtjn66R8etjkd2XSWDElCoKpUGY6KHRWZb6W4BWFFEVWO8pSJcmkRgQCBwEEVGgCVSZ1FTrhLC7YzV9t470_fAzNcfD34XQB_gCaU00M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Natural Landmarks Extraction Method from Range Image for Mobile Robot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaowei Feng ; Yongyi He ; Wuxin Huang ; Jian Yuan</creator><creatorcontrib>Xiaowei Feng ; Yongyi He ; Wuxin Huang ; Jian Yuan</creatorcontrib><description>This article describes a natural landmarks detection method to use with conventional 2D laser rangefinders. The method consists of three main parts: data clustering, smoothing and segmentation. A smoothing algorithm within a scale space framework is introduced to smooth the range image. This is achieved by repeatedly convolving the scan data with an adaptive smoothing mask calculated according to the Mahalanobis distances from a curve-based estimator, which tracks the features using UKF (unscented Kalman filter). Clustered data is segmented and characterized by the curvature of the range data. This method is robust to noise, and can reliably detect landmarks in the unstructured environment. Experimental results show that the proposed method is efficient in natural-landmark extraction.</description><identifier>ISBN: 1424441293</identifier><identifier>ISBN: 9781424441297</identifier><identifier>EISBN: 1424441315</identifier><identifier>EISBN: 9781424441310</identifier><identifier>DOI: 10.1109/CISP.2009.5303473</identifier><identifier>LCCN: 2009901327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Feature extraction ; Frequency ; Image segmentation ; Laser beam cutting ; Laser modes ; Mobile robots ; Noise robustness ; Smoothing methods ; Sonar navigation</subject><ispartof>2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5303473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5303473$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaowei Feng</creatorcontrib><creatorcontrib>Yongyi He</creatorcontrib><creatorcontrib>Wuxin Huang</creatorcontrib><creatorcontrib>Jian Yuan</creatorcontrib><title>Natural Landmarks Extraction Method from Range Image for Mobile Robot</title><title>2009 2nd International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>This article describes a natural landmarks detection method to use with conventional 2D laser rangefinders. The method consists of three main parts: data clustering, smoothing and segmentation. A smoothing algorithm within a scale space framework is introduced to smooth the range image. This is achieved by repeatedly convolving the scan data with an adaptive smoothing mask calculated according to the Mahalanobis distances from a curve-based estimator, which tracks the features using UKF (unscented Kalman filter). Clustered data is segmented and characterized by the curvature of the range data. This method is robust to noise, and can reliably detect landmarks in the unstructured environment. Experimental results show that the proposed method is efficient in natural-landmark extraction.</description><subject>Data mining</subject><subject>Feature extraction</subject><subject>Frequency</subject><subject>Image segmentation</subject><subject>Laser beam cutting</subject><subject>Laser modes</subject><subject>Mobile robots</subject><subject>Noise robustness</subject><subject>Smoothing methods</subject><subject>Sonar navigation</subject><isbn>1424441293</isbn><isbn>9781424441297</isbn><isbn>1424441315</isbn><isbn>9781424441310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kFFLwzAUhSMy0M39APElf6AzNzdpmkcp1Q06lbn3cdMmWmwbaSvov3fi8OUcDnwcDoexaxArAGFv883L80oKYVcaBSqDZ2wOSiqlAEGf_wdpccbmv6AVgNJcsOU4Nk7IVGurjb5kxSNNnwO1vKS-7mh4H3nxNQ1UTU3s-dZPb7HmYYgd31H_6vmmo6OGOPBtdE3r-S66OF2xWaB29MuTL9j-vtjn66R8etjkd2XSWDElCoKpUGY6KHRWZb6W4BWFFEVWO8pSJcmkRgQCBwEEVGgCVSZ1FTrhLC7YzV9t470_fAzNcfD34XQB_gCaU00M</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Xiaowei Feng</creator><creator>Yongyi He</creator><creator>Wuxin Huang</creator><creator>Jian Yuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Natural Landmarks Extraction Method from Range Image for Mobile Robot</title><author>Xiaowei Feng ; Yongyi He ; Wuxin Huang ; Jian Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-41f7c3285f43b948ed21e4af6308dba8642a7670fa1b1f101c37fac76bc3b0b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data mining</topic><topic>Feature extraction</topic><topic>Frequency</topic><topic>Image segmentation</topic><topic>Laser beam cutting</topic><topic>Laser modes</topic><topic>Mobile robots</topic><topic>Noise robustness</topic><topic>Smoothing methods</topic><topic>Sonar navigation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaowei Feng</creatorcontrib><creatorcontrib>Yongyi He</creatorcontrib><creatorcontrib>Wuxin Huang</creatorcontrib><creatorcontrib>Jian Yuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaowei Feng</au><au>Yongyi He</au><au>Wuxin Huang</au><au>Jian Yuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Natural Landmarks Extraction Method from Range Image for Mobile Robot</atitle><btitle>2009 2nd International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424441293</isbn><isbn>9781424441297</isbn><eisbn>1424441315</eisbn><eisbn>9781424441310</eisbn><abstract>This article describes a natural landmarks detection method to use with conventional 2D laser rangefinders. The method consists of three main parts: data clustering, smoothing and segmentation. A smoothing algorithm within a scale space framework is introduced to smooth the range image. This is achieved by repeatedly convolving the scan data with an adaptive smoothing mask calculated according to the Mahalanobis distances from a curve-based estimator, which tracks the features using UKF (unscented Kalman filter). Clustered data is segmented and characterized by the curvature of the range data. This method is robust to noise, and can reliably detect landmarks in the unstructured environment. Experimental results show that the proposed method is efficient in natural-landmark extraction.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2009.5303473</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424441293
ispartof 2009 2nd International Congress on Image and Signal Processing, 2009, p.1-5
issn
language eng
recordid cdi_ieee_primary_5303473
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Feature extraction
Frequency
Image segmentation
Laser beam cutting
Laser modes
Mobile robots
Noise robustness
Smoothing methods
Sonar navigation
title Natural Landmarks Extraction Method from Range Image for Mobile Robot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Natural%20Landmarks%20Extraction%20Method%20from%20Range%20Image%20for%20Mobile%20Robot&rft.btitle=2009%202nd%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Xiaowei%20Feng&rft.date=2009-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424441293&rft.isbn_list=9781424441297&rft_id=info:doi/10.1109/CISP.2009.5303473&rft.eisbn=1424441315&rft.eisbn_list=9781424441310&rft_dat=%3Cieee_6IE%3E5303473%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-41f7c3285f43b948ed21e4af6308dba8642a7670fa1b1f101c37fac76bc3b0b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5303473&rfr_iscdi=true