Loading…
Robust trajectory segmentation for programming by demonstration
A novel trajectory segmentation and modeling approach is presented. Trajectory segmentation and matching is an important step in the programming by demonstration (PbD) process to extract the user's intentions from multiple trajectories. To match multiple trajectories, the segmentation and model...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1209 |
container_issue | |
container_start_page | 1204 |
container_title | |
container_volume | |
creator | Abbas, T. MacDonald, B.A. |
description | A novel trajectory segmentation and modeling approach is presented. Trajectory segmentation and matching is an important step in the programming by demonstration (PbD) process to extract the user's intentions from multiple trajectories. To match multiple trajectories, the segmentation and modeling approach must be consistent and robust to disparities caused by robot dynamics and human imperfections. Several curve segmentation approaches have demonstrated substantial potential in the field of image processing and gesture recognition. They emphasize reduction of the degree of mismatch between given and model curves. However they fail to reduce mismatch between models of multiple trajectories recorded to demonstrate the same intention.We propose an M-estimator for trajectory modeling and set up a new segmentation criterion to address the issue. The proposed approach is better suited for PbD of mobile robots. The approach is evaluated for real robot trajectories. |
doi_str_mv | 10.1109/ROMAN.2009.5326281 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5326281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5326281</ieee_id><sourcerecordid>5326281</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1a714ee6a726781f48ad57b48ca074b9019ced0765496697eaa0566d8efd947d3</originalsourceid><addsrcrecordid>eNo9j81Kw0AUhUdRsNa-gG7mBRLnJnf-VlKKf1AtlO7LJHMTUkxSZsZF3t6KxbM5Z_GdA4exexA5gLCP283H8jMvhLC5LAtVGLhgt4AFohQGxCWbgUXMLJb66j-jvGGLGA_iJIsAWs7Y03asvmPiKbgD1WkME4_U9jQkl7px4M0Y-DGMbXB93w0trybuqR-HeCr8AnfsunFfkRZnn7Pdy_Nu9ZatN6_vq-U666xIGTgNSKScLpQ20KBxXuoKTe2ExsoKsDV5oZVEq5TV5JyQSnlDjbeofTlnD3-zHRHtj6HrXZj25-vlD0sfS_0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust trajectory segmentation for programming by demonstration</title><source>IEEE Xplore All Conference Series</source><creator>Abbas, T. ; MacDonald, B.A.</creator><creatorcontrib>Abbas, T. ; MacDonald, B.A.</creatorcontrib><description>A novel trajectory segmentation and modeling approach is presented. Trajectory segmentation and matching is an important step in the programming by demonstration (PbD) process to extract the user's intentions from multiple trajectories. To match multiple trajectories, the segmentation and modeling approach must be consistent and robust to disparities caused by robot dynamics and human imperfections. Several curve segmentation approaches have demonstrated substantial potential in the field of image processing and gesture recognition. They emphasize reduction of the degree of mismatch between given and model curves. However they fail to reduce mismatch between models of multiple trajectories recorded to demonstrate the same intention.We propose an M-estimator for trajectory modeling and set up a new segmentation criterion to address the issue. The proposed approach is better suited for PbD of mobile robots. The approach is evaluated for real robot trajectories.</description><identifier>ISSN: 1944-9445</identifier><identifier>EISSN: 1944-9437</identifier><identifier>EISBN: 1424450810</identifier><identifier>EISBN: 9781424450817</identifier><identifier>DOI: 10.1109/ROMAN.2009.5326281</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hidden Markov models ; Humans ; Image segmentation ; Mobile robots ; Navigation ; Robot kinematics ; Robot programming ; Robot sensing systems ; Robustness ; Wheels</subject><ispartof>RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009, p.1204-1209</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5326281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5326281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abbas, T.</creatorcontrib><creatorcontrib>MacDonald, B.A.</creatorcontrib><title>Robust trajectory segmentation for programming by demonstration</title><title>RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication</title><addtitle>ROMAN</addtitle><description>A novel trajectory segmentation and modeling approach is presented. Trajectory segmentation and matching is an important step in the programming by demonstration (PbD) process to extract the user's intentions from multiple trajectories. To match multiple trajectories, the segmentation and modeling approach must be consistent and robust to disparities caused by robot dynamics and human imperfections. Several curve segmentation approaches have demonstrated substantial potential in the field of image processing and gesture recognition. They emphasize reduction of the degree of mismatch between given and model curves. However they fail to reduce mismatch between models of multiple trajectories recorded to demonstrate the same intention.We propose an M-estimator for trajectory modeling and set up a new segmentation criterion to address the issue. The proposed approach is better suited for PbD of mobile robots. The approach is evaluated for real robot trajectories.</description><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Robot kinematics</subject><subject>Robot programming</subject><subject>Robot sensing systems</subject><subject>Robustness</subject><subject>Wheels</subject><issn>1944-9445</issn><issn>1944-9437</issn><isbn>1424450810</isbn><isbn>9781424450817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j81Kw0AUhUdRsNa-gG7mBRLnJnf-VlKKf1AtlO7LJHMTUkxSZsZF3t6KxbM5Z_GdA4exexA5gLCP283H8jMvhLC5LAtVGLhgt4AFohQGxCWbgUXMLJb66j-jvGGLGA_iJIsAWs7Y03asvmPiKbgD1WkME4_U9jQkl7px4M0Y-DGMbXB93w0trybuqR-HeCr8AnfsunFfkRZnn7Pdy_Nu9ZatN6_vq-U666xIGTgNSKScLpQ20KBxXuoKTe2ExsoKsDV5oZVEq5TV5JyQSnlDjbeofTlnD3-zHRHtj6HrXZj25-vlD0sfS_0</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Abbas, T.</creator><creator>MacDonald, B.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Robust trajectory segmentation for programming by demonstration</title><author>Abbas, T. ; MacDonald, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1a714ee6a726781f48ad57b48ca074b9019ced0765496697eaa0566d8efd947d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Robot kinematics</topic><topic>Robot programming</topic><topic>Robot sensing systems</topic><topic>Robustness</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbas, T.</creatorcontrib><creatorcontrib>MacDonald, B.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abbas, T.</au><au>MacDonald, B.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust trajectory segmentation for programming by demonstration</atitle><btitle>RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication</btitle><stitle>ROMAN</stitle><date>2009-09</date><risdate>2009</risdate><spage>1204</spage><epage>1209</epage><pages>1204-1209</pages><issn>1944-9445</issn><eissn>1944-9437</eissn><eisbn>1424450810</eisbn><eisbn>9781424450817</eisbn><abstract>A novel trajectory segmentation and modeling approach is presented. Trajectory segmentation and matching is an important step in the programming by demonstration (PbD) process to extract the user's intentions from multiple trajectories. To match multiple trajectories, the segmentation and modeling approach must be consistent and robust to disparities caused by robot dynamics and human imperfections. Several curve segmentation approaches have demonstrated substantial potential in the field of image processing and gesture recognition. They emphasize reduction of the degree of mismatch between given and model curves. However they fail to reduce mismatch between models of multiple trajectories recorded to demonstrate the same intention.We propose an M-estimator for trajectory modeling and set up a new segmentation criterion to address the issue. The proposed approach is better suited for PbD of mobile robots. The approach is evaluated for real robot trajectories.</abstract><pub>IEEE</pub><doi>10.1109/ROMAN.2009.5326281</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1944-9445 |
ispartof | RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009, p.1204-1209 |
issn | 1944-9445 1944-9437 |
language | eng |
recordid | cdi_ieee_primary_5326281 |
source | IEEE Xplore All Conference Series |
subjects | Hidden Markov models Humans Image segmentation Mobile robots Navigation Robot kinematics Robot programming Robot sensing systems Robustness Wheels |
title | Robust trajectory segmentation for programming by demonstration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20trajectory%20segmentation%20for%20programming%20by%20demonstration&rft.btitle=RO-MAN%202009%20-%20The%2018th%20IEEE%20International%20Symposium%20on%20Robot%20and%20Human%20Interactive%20Communication&rft.au=Abbas,%20T.&rft.date=2009-09&rft.spage=1204&rft.epage=1209&rft.pages=1204-1209&rft.issn=1944-9445&rft.eissn=1944-9437&rft_id=info:doi/10.1109/ROMAN.2009.5326281&rft.eisbn=1424450810&rft.eisbn_list=9781424450817&rft_dat=%3Cieee_CHZPO%3E5326281%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-1a714ee6a726781f48ad57b48ca074b9019ced0765496697eaa0566d8efd947d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5326281&rfr_iscdi=true |