Loading…
Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches
This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology st...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 435 |
container_issue | |
container_start_page | 433 |
container_title | |
container_volume | |
creator | M., Anand Kumar C., Arun Kumar Dhanalakshmi, V. Rekha, R.U. Soman, K.P. Rajendran, S. |
description | This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging. |
doi_str_mv | 10.1109/ARTCom.2009.184 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5329355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5329355</ieee_id><sourcerecordid>5329355</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-62466fc7acbd184046977a332ebe25623a09623008b5d69805e01a00a5da39713</originalsourceid><addsrcrecordid>eNotjk1Lw0AYhFdEUGvOHrzkDyS--509huAXpAiSnsubZJOupJuwSYX6643oHGbgGRiGkHsKKaVgHvOPqhiPKQMwKc3EBbkFrYzkmZDskkRGZ1QwISQFwa9JNM-fsGotM1A3pNqOYTqMw9i7Boc49zicv22IuzHEed8Pp8V5XNyXjUv0_Ql7O8e72fk-3mJzcH7lFoP_Bfk0hXGFdr4jVx0Os43-c0N2z09V8ZqU7y9vRV4mjmq5JIoJpbpGY1O363MQymiNnDNbWyYV4whmdYCslq0yGUgLFAFQtsiNpnxDHv52nbV2PwV3xHDeS84Ml5L_AOcOUOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>M., Anand Kumar ; C., Arun Kumar ; Dhanalakshmi, V. ; Rekha, R.U. ; Soman, K.P. ; Rajendran, S.</creator><creatorcontrib>M., Anand Kumar ; C., Arun Kumar ; Dhanalakshmi, V. ; Rekha, R.U. ; Soman, K.P. ; Rajendran, S.</creatorcontrib><description>This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.</description><identifier>ISBN: 9781424451043</identifier><identifier>ISBN: 1424451043</identifier><identifier>EISBN: 0769538452</identifier><identifier>EISBN: 9780769538457</identifier><identifier>DOI: 10.1109/ARTCom.2009.184</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communications technology ; Computer networks ; Labeling ; Machine learning ; Morhological analyzer ; Morpheme ; Morphology ; Natural languages ; Paper technology ; Search engines ; Segmentation ; Sequence labeling ; Speech analysis ; Speech synthesis</subject><ispartof>2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, p.433-435</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5329355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5329355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>M., Anand Kumar</creatorcontrib><creatorcontrib>C., Arun Kumar</creatorcontrib><creatorcontrib>Dhanalakshmi, V.</creatorcontrib><creatorcontrib>Rekha, R.U.</creatorcontrib><creatorcontrib>Soman, K.P.</creatorcontrib><creatorcontrib>Rajendran, S.</creatorcontrib><title>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</title><title>2009 International Conference on Advances in Recent Technologies in Communication and Computing</title><addtitle>ARTCOM</addtitle><description>This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.</description><subject>Communications technology</subject><subject>Computer networks</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Morhological analyzer</subject><subject>Morpheme</subject><subject>Morphology</subject><subject>Natural languages</subject><subject>Paper technology</subject><subject>Search engines</subject><subject>Segmentation</subject><subject>Sequence labeling</subject><subject>Speech analysis</subject><subject>Speech synthesis</subject><isbn>9781424451043</isbn><isbn>1424451043</isbn><isbn>0769538452</isbn><isbn>9780769538457</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1Lw0AYhFdEUGvOHrzkDyS--509huAXpAiSnsubZJOupJuwSYX6643oHGbgGRiGkHsKKaVgHvOPqhiPKQMwKc3EBbkFrYzkmZDskkRGZ1QwISQFwa9JNM-fsGotM1A3pNqOYTqMw9i7Boc49zicv22IuzHEed8Pp8V5XNyXjUv0_Ql7O8e72fk-3mJzcH7lFoP_Bfk0hXGFdr4jVx0Os43-c0N2z09V8ZqU7y9vRV4mjmq5JIoJpbpGY1O363MQymiNnDNbWyYV4whmdYCslq0yGUgLFAFQtsiNpnxDHv52nbV2PwV3xHDeS84Ml5L_AOcOUOw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>M., Anand Kumar</creator><creator>C., Arun Kumar</creator><creator>Dhanalakshmi, V.</creator><creator>Rekha, R.U.</creator><creator>Soman, K.P.</creator><creator>Rajendran, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</title><author>M., Anand Kumar ; C., Arun Kumar ; Dhanalakshmi, V. ; Rekha, R.U. ; Soman, K.P. ; Rajendran, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-62466fc7acbd184046977a332ebe25623a09623008b5d69805e01a00a5da39713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Communications technology</topic><topic>Computer networks</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Morhological analyzer</topic><topic>Morpheme</topic><topic>Morphology</topic><topic>Natural languages</topic><topic>Paper technology</topic><topic>Search engines</topic><topic>Segmentation</topic><topic>Sequence labeling</topic><topic>Speech analysis</topic><topic>Speech synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>M., Anand Kumar</creatorcontrib><creatorcontrib>C., Arun Kumar</creatorcontrib><creatorcontrib>Dhanalakshmi, V.</creatorcontrib><creatorcontrib>Rekha, R.U.</creatorcontrib><creatorcontrib>Soman, K.P.</creatorcontrib><creatorcontrib>Rajendran, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>M., Anand Kumar</au><au>C., Arun Kumar</au><au>Dhanalakshmi, V.</au><au>Rekha, R.U.</au><au>Soman, K.P.</au><au>Rajendran, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</atitle><btitle>2009 International Conference on Advances in Recent Technologies in Communication and Computing</btitle><stitle>ARTCOM</stitle><date>2009-10</date><risdate>2009</risdate><spage>433</spage><epage>435</epage><pages>433-435</pages><isbn>9781424451043</isbn><isbn>1424451043</isbn><eisbn>0769538452</eisbn><eisbn>9780769538457</eisbn><abstract>This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.</abstract><pub>IEEE</pub><doi>10.1109/ARTCom.2009.184</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424451043 |
ispartof | 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, p.433-435 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5329355 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communications technology Computer networks Labeling Machine learning Morhological analyzer Morpheme Morphology Natural languages Paper technology Search engines Segmentation Sequence labeling Speech analysis Speech synthesis |
title | Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Morphological%20Analyzer%20for%20Agglutinative%20Languages%20Using%20Machine%20Learning%20Approaches&rft.btitle=2009%20International%20Conference%20on%20Advances%20in%20Recent%20Technologies%20in%20Communication%20and%20Computing&rft.au=M.,%20Anand%20Kumar&rft.date=2009-10&rft.spage=433&rft.epage=435&rft.pages=433-435&rft.isbn=9781424451043&rft.isbn_list=1424451043&rft_id=info:doi/10.1109/ARTCom.2009.184&rft.eisbn=0769538452&rft.eisbn_list=9780769538457&rft_dat=%3Cieee_6IE%3E5329355%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-62466fc7acbd184046977a332ebe25623a09623008b5d69805e01a00a5da39713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5329355&rfr_iscdi=true |