Loading…

Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches

This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology st...

Full description

Saved in:
Bibliographic Details
Main Authors: M., Anand Kumar, C., Arun Kumar, Dhanalakshmi, V., Rekha, R.U., Soman, K.P., Rajendran, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 435
container_issue
container_start_page 433
container_title
container_volume
creator M., Anand Kumar
C., Arun Kumar
Dhanalakshmi, V.
Rekha, R.U.
Soman, K.P.
Rajendran, S.
description This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.
doi_str_mv 10.1109/ARTCom.2009.184
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5329355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5329355</ieee_id><sourcerecordid>5329355</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-62466fc7acbd184046977a332ebe25623a09623008b5d69805e01a00a5da39713</originalsourceid><addsrcrecordid>eNotjk1Lw0AYhFdEUGvOHrzkDyS--509huAXpAiSnsubZJOupJuwSYX6643oHGbgGRiGkHsKKaVgHvOPqhiPKQMwKc3EBbkFrYzkmZDskkRGZ1QwISQFwa9JNM-fsGotM1A3pNqOYTqMw9i7Boc49zicv22IuzHEed8Pp8V5XNyXjUv0_Ql7O8e72fk-3mJzcH7lFoP_Bfk0hXGFdr4jVx0Os43-c0N2z09V8ZqU7y9vRV4mjmq5JIoJpbpGY1O363MQymiNnDNbWyYV4whmdYCslq0yGUgLFAFQtsiNpnxDHv52nbV2PwV3xHDeS84Ml5L_AOcOUOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>M., Anand Kumar ; C., Arun Kumar ; Dhanalakshmi, V. ; Rekha, R.U. ; Soman, K.P. ; Rajendran, S.</creator><creatorcontrib>M., Anand Kumar ; C., Arun Kumar ; Dhanalakshmi, V. ; Rekha, R.U. ; Soman, K.P. ; Rajendran, S.</creatorcontrib><description>This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.</description><identifier>ISBN: 9781424451043</identifier><identifier>ISBN: 1424451043</identifier><identifier>EISBN: 0769538452</identifier><identifier>EISBN: 9780769538457</identifier><identifier>DOI: 10.1109/ARTCom.2009.184</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communications technology ; Computer networks ; Labeling ; Machine learning ; Morhological analyzer ; Morpheme ; Morphology ; Natural languages ; Paper technology ; Search engines ; Segmentation ; Sequence labeling ; Speech analysis ; Speech synthesis</subject><ispartof>2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, p.433-435</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5329355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5329355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>M., Anand Kumar</creatorcontrib><creatorcontrib>C., Arun Kumar</creatorcontrib><creatorcontrib>Dhanalakshmi, V.</creatorcontrib><creatorcontrib>Rekha, R.U.</creatorcontrib><creatorcontrib>Soman, K.P.</creatorcontrib><creatorcontrib>Rajendran, S.</creatorcontrib><title>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</title><title>2009 International Conference on Advances in Recent Technologies in Communication and Computing</title><addtitle>ARTCOM</addtitle><description>This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.</description><subject>Communications technology</subject><subject>Computer networks</subject><subject>Labeling</subject><subject>Machine learning</subject><subject>Morhological analyzer</subject><subject>Morpheme</subject><subject>Morphology</subject><subject>Natural languages</subject><subject>Paper technology</subject><subject>Search engines</subject><subject>Segmentation</subject><subject>Sequence labeling</subject><subject>Speech analysis</subject><subject>Speech synthesis</subject><isbn>9781424451043</isbn><isbn>1424451043</isbn><isbn>0769538452</isbn><isbn>9780769538457</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1Lw0AYhFdEUGvOHrzkDyS--509huAXpAiSnsubZJOupJuwSYX6643oHGbgGRiGkHsKKaVgHvOPqhiPKQMwKc3EBbkFrYzkmZDskkRGZ1QwISQFwa9JNM-fsGotM1A3pNqOYTqMw9i7Boc49zicv22IuzHEed8Pp8V5XNyXjUv0_Ql7O8e72fk-3mJzcH7lFoP_Bfk0hXGFdr4jVx0Os43-c0N2z09V8ZqU7y9vRV4mjmq5JIoJpbpGY1O363MQymiNnDNbWyYV4whmdYCslq0yGUgLFAFQtsiNpnxDHv52nbV2PwV3xHDeS84Ml5L_AOcOUOw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>M., Anand Kumar</creator><creator>C., Arun Kumar</creator><creator>Dhanalakshmi, V.</creator><creator>Rekha, R.U.</creator><creator>Soman, K.P.</creator><creator>Rajendran, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</title><author>M., Anand Kumar ; C., Arun Kumar ; Dhanalakshmi, V. ; Rekha, R.U. ; Soman, K.P. ; Rajendran, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-62466fc7acbd184046977a332ebe25623a09623008b5d69805e01a00a5da39713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Communications technology</topic><topic>Computer networks</topic><topic>Labeling</topic><topic>Machine learning</topic><topic>Morhological analyzer</topic><topic>Morpheme</topic><topic>Morphology</topic><topic>Natural languages</topic><topic>Paper technology</topic><topic>Search engines</topic><topic>Segmentation</topic><topic>Sequence labeling</topic><topic>Speech analysis</topic><topic>Speech synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>M., Anand Kumar</creatorcontrib><creatorcontrib>C., Arun Kumar</creatorcontrib><creatorcontrib>Dhanalakshmi, V.</creatorcontrib><creatorcontrib>Rekha, R.U.</creatorcontrib><creatorcontrib>Soman, K.P.</creatorcontrib><creatorcontrib>Rajendran, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>M., Anand Kumar</au><au>C., Arun Kumar</au><au>Dhanalakshmi, V.</au><au>Rekha, R.U.</au><au>Soman, K.P.</au><au>Rajendran, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches</atitle><btitle>2009 International Conference on Advances in Recent Technologies in Communication and Computing</btitle><stitle>ARTCOM</stitle><date>2009-10</date><risdate>2009</risdate><spage>433</spage><epage>435</epage><pages>433-435</pages><isbn>9781424451043</isbn><isbn>1424451043</isbn><eisbn>0769538452</eisbn><eisbn>9780769538457</eisbn><abstract>This paper is based on morphological analyzer using machine learning approach for complex agglutinative natural languages. Morphological analysis is concerned with retrieving the structure, the syntactic and morphological properties or the meaning of a morphologically complex word. The morphology structure of agglutinative language is unique and capturing its complexity in a machine analyzable and generatable format is a challenging job. Generally rule based approaches are used for building morphological analyzer system. In rule based approaches what works in the forward direction may not work in the backward direction. This new and state of the art machine learning approach based on sequence labeling and training by kernel methods captures the non-linear relationships in the different aspect of morphological features of natural languages in a better and simpler way. The overall accuracy obtained for the morphologically rich agglutinative language (Tamil) was really encouraging.</abstract><pub>IEEE</pub><doi>10.1109/ARTCom.2009.184</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424451043
ispartof 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, p.433-435
issn
language eng
recordid cdi_ieee_primary_5329355
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communications technology
Computer networks
Labeling
Machine learning
Morhological analyzer
Morpheme
Morphology
Natural languages
Paper technology
Search engines
Segmentation
Sequence labeling
Speech analysis
Speech synthesis
title Morphological Analyzer for Agglutinative Languages Using Machine Learning Approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Morphological%20Analyzer%20for%20Agglutinative%20Languages%20Using%20Machine%20Learning%20Approaches&rft.btitle=2009%20International%20Conference%20on%20Advances%20in%20Recent%20Technologies%20in%20Communication%20and%20Computing&rft.au=M.,%20Anand%20Kumar&rft.date=2009-10&rft.spage=433&rft.epage=435&rft.pages=433-435&rft.isbn=9781424451043&rft.isbn_list=1424451043&rft_id=info:doi/10.1109/ARTCom.2009.184&rft.eisbn=0769538452&rft.eisbn_list=9780769538457&rft_dat=%3Cieee_6IE%3E5329355%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-62466fc7acbd184046977a332ebe25623a09623008b5d69805e01a00a5da39713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5329355&rfr_iscdi=true