Loading…
Clustering microarray time-series data using expectation maximization and multiple profile alignment
A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignm...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy. |
---|---|
DOI: | 10.1109/BIBMW.2009.5332128 |