Loading…

Mean Best Basis Algorithm for Wavelet Speech Parameterization

In this paper, we propose a feature selection and transformation approach for universal steganalysis based on genetic algorithm (GA) and higher order statistics. We choose three types of typical statistics as candidate features and twelve kinds of basic functions as candidate transformations. The GA...

Full description

Saved in:
Bibliographic Details
Main Authors: Galka, J., Ziolko, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1113
container_issue
container_start_page 1110
container_title
container_volume
creator Galka, J.
Ziolko, M.
description In this paper, we propose a feature selection and transformation approach for universal steganalysis based on genetic algorithm (GA) and higher order statistics. We choose three types of typical statistics as candidate features and twelve kinds of basic functions as candidate transformations. The GA is utilized to select a subset of candidate features, a subset of candidate transformations and coefficients of the logistic regression model for blind image steganalysis. The logistic regression model is then used as the classifier. Experimental results show that the GA based approach increases the blind detection accuracy and also provides a good generality by identifying an untrained stego-algorithm.
doi_str_mv 10.1109/IIH-MSP.2009.298
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5337539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5337539</ieee_id><sourcerecordid>5337539</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-85f11f35f3a8cfb11899128e6826e2898f7283d56eda9515bdc805170bf456ef3</originalsourceid><addsrcrecordid>eNotjM1Kw0AURkdEUGr2gpt5gdS58z8LF21RG2ix0ILLMknu2JGkKZlB0Ke3qN_mcM7iI-QO2BSAuYeqWpbr7WbKGXNT7uwFKZyxzGinhNHcXP46SC6lNGD0NSlS-mDnSSUUwA15XKM_0jmmTOc-xURn3fswxnzoaRhG-uY_scNMtyfE5kA3fvQ9Zhzjt89xON6Sq-C7hMU_J2T3_LRbLMvV60u1mK3K6FgurQoAQaggvG1CDWCdA25RW66RW2eD4Va0SmPrnQJVt41lCgyrgzzHICbk_u82IuL-NMbej197JYRRwokfvo9I_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mean Best Basis Algorithm for Wavelet Speech Parameterization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Galka, J. ; Ziolko, M.</creator><creatorcontrib>Galka, J. ; Ziolko, M.</creatorcontrib><description>In this paper, we propose a feature selection and transformation approach for universal steganalysis based on genetic algorithm (GA) and higher order statistics. We choose three types of typical statistics as candidate features and twelve kinds of basic functions as candidate transformations. The GA is utilized to select a subset of candidate features, a subset of candidate transformations and coefficients of the logistic regression model for blind image steganalysis. The logistic regression model is then used as the classifier. Experimental results show that the GA based approach increases the blind detection accuracy and also provides a good generality by identifying an untrained stego-algorithm.</description><identifier>ISBN: 9781424447176</identifier><identifier>ISBN: 1424447178</identifier><identifier>EISBN: 9780769537627</identifier><identifier>EISBN: 0769537626</identifier><identifier>DOI: 10.1109/IIH-MSP.2009.298</identifier><language>eng</language><publisher>IEEE</publisher><subject>Basis algorithms ; best basis ; Cepstral analysis ; Discrete wavelet transforms ; Frequency conversion ; Signal processing algorithms ; Speech processing ; Speech recognition ; Wavelet coefficients ; Wavelet packets ; Wavelet transforms ; wavelets</subject><ispartof>2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009, p.1110-1113</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5337539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5337539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Galka, J.</creatorcontrib><creatorcontrib>Ziolko, M.</creatorcontrib><title>Mean Best Basis Algorithm for Wavelet Speech Parameterization</title><title>2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing</title><addtitle>IIHMSP</addtitle><description>In this paper, we propose a feature selection and transformation approach for universal steganalysis based on genetic algorithm (GA) and higher order statistics. We choose three types of typical statistics as candidate features and twelve kinds of basic functions as candidate transformations. The GA is utilized to select a subset of candidate features, a subset of candidate transformations and coefficients of the logistic regression model for blind image steganalysis. The logistic regression model is then used as the classifier. Experimental results show that the GA based approach increases the blind detection accuracy and also provides a good generality by identifying an untrained stego-algorithm.</description><subject>Basis algorithms</subject><subject>best basis</subject><subject>Cepstral analysis</subject><subject>Discrete wavelet transforms</subject><subject>Frequency conversion</subject><subject>Signal processing algorithms</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>Wavelet coefficients</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><subject>wavelets</subject><isbn>9781424447176</isbn><isbn>1424447178</isbn><isbn>9780769537627</isbn><isbn>0769537626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1Kw0AURkdEUGr2gpt5gdS58z8LF21RG2ix0ILLMknu2JGkKZlB0Ke3qN_mcM7iI-QO2BSAuYeqWpbr7WbKGXNT7uwFKZyxzGinhNHcXP46SC6lNGD0NSlS-mDnSSUUwA15XKM_0jmmTOc-xURn3fswxnzoaRhG-uY_scNMtyfE5kA3fvQ9Zhzjt89xON6Sq-C7hMU_J2T3_LRbLMvV60u1mK3K6FgurQoAQaggvG1CDWCdA25RW66RW2eD4Va0SmPrnQJVt41lCgyrgzzHICbk_u82IuL-NMbej197JYRRwokfvo9I_A</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Galka, J.</creator><creator>Ziolko, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Mean Best Basis Algorithm for Wavelet Speech Parameterization</title><author>Galka, J. ; Ziolko, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-85f11f35f3a8cfb11899128e6826e2898f7283d56eda9515bdc805170bf456ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Basis algorithms</topic><topic>best basis</topic><topic>Cepstral analysis</topic><topic>Discrete wavelet transforms</topic><topic>Frequency conversion</topic><topic>Signal processing algorithms</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>Wavelet coefficients</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><topic>wavelets</topic><toplevel>online_resources</toplevel><creatorcontrib>Galka, J.</creatorcontrib><creatorcontrib>Ziolko, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Galka, J.</au><au>Ziolko, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mean Best Basis Algorithm for Wavelet Speech Parameterization</atitle><btitle>2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing</btitle><stitle>IIHMSP</stitle><date>2009-09</date><risdate>2009</risdate><spage>1110</spage><epage>1113</epage><pages>1110-1113</pages><isbn>9781424447176</isbn><isbn>1424447178</isbn><eisbn>9780769537627</eisbn><eisbn>0769537626</eisbn><abstract>In this paper, we propose a feature selection and transformation approach for universal steganalysis based on genetic algorithm (GA) and higher order statistics. We choose three types of typical statistics as candidate features and twelve kinds of basic functions as candidate transformations. The GA is utilized to select a subset of candidate features, a subset of candidate transformations and coefficients of the logistic regression model for blind image steganalysis. The logistic regression model is then used as the classifier. Experimental results show that the GA based approach increases the blind detection accuracy and also provides a good generality by identifying an untrained stego-algorithm.</abstract><pub>IEEE</pub><doi>10.1109/IIH-MSP.2009.298</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424447176
ispartof 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009, p.1110-1113
issn
language eng
recordid cdi_ieee_primary_5337539
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Basis algorithms
best basis
Cepstral analysis
Discrete wavelet transforms
Frequency conversion
Signal processing algorithms
Speech processing
Speech recognition
Wavelet coefficients
Wavelet packets
Wavelet transforms
wavelets
title Mean Best Basis Algorithm for Wavelet Speech Parameterization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mean%20Best%20Basis%20Algorithm%20for%20Wavelet%20Speech%20Parameterization&rft.btitle=2009%20Fifth%20International%20Conference%20on%20Intelligent%20Information%20Hiding%20and%20Multimedia%20Signal%20Processing&rft.au=Galka,%20J.&rft.date=2009-09&rft.spage=1110&rft.epage=1113&rft.pages=1110-1113&rft.isbn=9781424447176&rft.isbn_list=1424447178&rft_id=info:doi/10.1109/IIH-MSP.2009.298&rft.eisbn=9780769537627&rft.eisbn_list=0769537626&rft_dat=%3Cieee_6IE%3E5337539%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-85f11f35f3a8cfb11899128e6826e2898f7283d56eda9515bdc805170bf456ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5337539&rfr_iscdi=true