Loading…

Sparsity inspired selection and recognition of iris images

Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video s...

Full description

Saved in:
Bibliographic Details
Main Authors: Pillai, J.K., Patel, V.M., Chellappa, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Pillai, J.K.
Patel, V.M.
Chellappa, R.
description Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.
doi_str_mv 10.1109/BTAS.2009.5339067
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5339067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5339067</ieee_id><sourcerecordid>5339067</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-854e30b3403f88521637cc43fefeba3f37cc8aec63e291dbed62accf4655d38d3</originalsourceid><addsrcrecordid>eNo9j8FKAzEYhCNS0NY-gHjJC-ya5E-yibdarAoFD63nkk3-lEjdXZJe-vZutTiX4YNhhiHknrOac2Yfn7eLTS0Ys7UCsEw3V2TKpZBSMcHs9T9wqyZkeg6OISvhhsxL-WKjpAJu9C152gwul3Q80dSVIWUMtOAB_TH1HXVdoBl9v-_SL_eRppwKTd9uj-WOTKI7FJxffEY-Vy_b5Vu1_nh9Xy7WVeIATWWURGAtSAbRGCW4hsZ7CREjtg7imYxDrwGF5aHFoIXzPkqtVAATYEYe_noTIu6GPK7n0-5yHH4AjRBKZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparsity inspired selection and recognition of iris images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pillai, J.K. ; Patel, V.M. ; Chellappa, R.</creator><creatorcontrib>Pillai, J.K. ; Patel, V.M. ; Chellappa, R.</creatorcontrib><description>Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.</description><identifier>ISBN: 1424450195</identifier><identifier>ISBN: 9781424450190</identifier><identifier>EISBN: 1424450209</identifier><identifier>EISBN: 9781424450206</identifier><identifier>DOI: 10.1109/BTAS.2009.5339067</identifier><identifier>LCCN: 2009906943</identifier><language>eng</language><publisher>IEEE</publisher><subject>Degradation ; Eyelids ; Feature extraction ; Image quality ; Image recognition ; Image segmentation ; Iris recognition ; Performance evaluation ; Reflection ; Streaming media</subject><ispartof>2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5339067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5339067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pillai, J.K.</creatorcontrib><creatorcontrib>Patel, V.M.</creatorcontrib><creatorcontrib>Chellappa, R.</creatorcontrib><title>Sparsity inspired selection and recognition of iris images</title><title>2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems</title><addtitle>BTAS</addtitle><description>Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.</description><subject>Degradation</subject><subject>Eyelids</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Performance evaluation</subject><subject>Reflection</subject><subject>Streaming media</subject><isbn>1424450195</isbn><isbn>9781424450190</isbn><isbn>1424450209</isbn><isbn>9781424450206</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j8FKAzEYhCNS0NY-gHjJC-ya5E-yibdarAoFD63nkk3-lEjdXZJe-vZutTiX4YNhhiHknrOac2Yfn7eLTS0Ys7UCsEw3V2TKpZBSMcHs9T9wqyZkeg6OISvhhsxL-WKjpAJu9C152gwul3Q80dSVIWUMtOAB_TH1HXVdoBl9v-_SL_eRppwKTd9uj-WOTKI7FJxffEY-Vy_b5Vu1_nh9Xy7WVeIATWWURGAtSAbRGCW4hsZ7CREjtg7imYxDrwGF5aHFoIXzPkqtVAATYEYe_noTIu6GPK7n0-5yHH4AjRBKZg</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Pillai, J.K.</creator><creator>Patel, V.M.</creator><creator>Chellappa, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Sparsity inspired selection and recognition of iris images</title><author>Pillai, J.K. ; Patel, V.M. ; Chellappa, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-854e30b3403f88521637cc43fefeba3f37cc8aec63e291dbed62accf4655d38d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Degradation</topic><topic>Eyelids</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Performance evaluation</topic><topic>Reflection</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Pillai, J.K.</creatorcontrib><creatorcontrib>Patel, V.M.</creatorcontrib><creatorcontrib>Chellappa, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pillai, J.K.</au><au>Patel, V.M.</au><au>Chellappa, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparsity inspired selection and recognition of iris images</atitle><btitle>2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems</btitle><stitle>BTAS</stitle><date>2009-09</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424450195</isbn><isbn>9781424450190</isbn><eisbn>1424450209</eisbn><eisbn>9781424450206</eisbn><abstract>Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.</abstract><pub>IEEE</pub><doi>10.1109/BTAS.2009.5339067</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424450195
ispartof 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009, p.1-6
issn
language eng
recordid cdi_ieee_primary_5339067
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Degradation
Eyelids
Feature extraction
Image quality
Image recognition
Image segmentation
Iris recognition
Performance evaluation
Reflection
Streaming media
title Sparsity inspired selection and recognition of iris images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparsity%20inspired%20selection%20and%20recognition%20of%20iris%20images&rft.btitle=2009%20IEEE%203rd%20International%20Conference%20on%20Biometrics:%20Theory,%20Applications,%20and%20Systems&rft.au=Pillai,%20J.K.&rft.date=2009-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424450195&rft.isbn_list=9781424450190&rft_id=info:doi/10.1109/BTAS.2009.5339067&rft.eisbn=1424450209&rft.eisbn_list=9781424450206&rft_dat=%3Cieee_6IE%3E5339067%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1337-854e30b3403f88521637cc43fefeba3f37cc8aec63e291dbed62accf4655d38d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5339067&rfr_iscdi=true