Loading…
Sparsity inspired selection and recognition of iris images
Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video s...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Pillai, J.K. Patel, V.M. Chellappa, R. |
description | Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications. |
doi_str_mv | 10.1109/BTAS.2009.5339067 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5339067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5339067</ieee_id><sourcerecordid>5339067</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-854e30b3403f88521637cc43fefeba3f37cc8aec63e291dbed62accf4655d38d3</originalsourceid><addsrcrecordid>eNo9j8FKAzEYhCNS0NY-gHjJC-ya5E-yibdarAoFD63nkk3-lEjdXZJe-vZutTiX4YNhhiHknrOac2Yfn7eLTS0Ys7UCsEw3V2TKpZBSMcHs9T9wqyZkeg6OISvhhsxL-WKjpAJu9C152gwul3Q80dSVIWUMtOAB_TH1HXVdoBl9v-_SL_eRppwKTd9uj-WOTKI7FJxffEY-Vy_b5Vu1_nh9Xy7WVeIATWWURGAtSAbRGCW4hsZ7CREjtg7imYxDrwGF5aHFoIXzPkqtVAATYEYe_noTIu6GPK7n0-5yHH4AjRBKZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparsity inspired selection and recognition of iris images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pillai, J.K. ; Patel, V.M. ; Chellappa, R.</creator><creatorcontrib>Pillai, J.K. ; Patel, V.M. ; Chellappa, R.</creatorcontrib><description>Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.</description><identifier>ISBN: 1424450195</identifier><identifier>ISBN: 9781424450190</identifier><identifier>EISBN: 1424450209</identifier><identifier>EISBN: 9781424450206</identifier><identifier>DOI: 10.1109/BTAS.2009.5339067</identifier><identifier>LCCN: 2009906943</identifier><language>eng</language><publisher>IEEE</publisher><subject>Degradation ; Eyelids ; Feature extraction ; Image quality ; Image recognition ; Image segmentation ; Iris recognition ; Performance evaluation ; Reflection ; Streaming media</subject><ispartof>2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5339067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5339067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pillai, J.K.</creatorcontrib><creatorcontrib>Patel, V.M.</creatorcontrib><creatorcontrib>Chellappa, R.</creatorcontrib><title>Sparsity inspired selection and recognition of iris images</title><title>2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems</title><addtitle>BTAS</addtitle><description>Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.</description><subject>Degradation</subject><subject>Eyelids</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Performance evaluation</subject><subject>Reflection</subject><subject>Streaming media</subject><isbn>1424450195</isbn><isbn>9781424450190</isbn><isbn>1424450209</isbn><isbn>9781424450206</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j8FKAzEYhCNS0NY-gHjJC-ya5E-yibdarAoFD63nkk3-lEjdXZJe-vZutTiX4YNhhiHknrOac2Yfn7eLTS0Ys7UCsEw3V2TKpZBSMcHs9T9wqyZkeg6OISvhhsxL-WKjpAJu9C152gwul3Q80dSVIWUMtOAB_TH1HXVdoBl9v-_SL_eRppwKTd9uj-WOTKI7FJxffEY-Vy_b5Vu1_nh9Xy7WVeIATWWURGAtSAbRGCW4hsZ7CREjtg7imYxDrwGF5aHFoIXzPkqtVAATYEYe_noTIu6GPK7n0-5yHH4AjRBKZg</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Pillai, J.K.</creator><creator>Patel, V.M.</creator><creator>Chellappa, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Sparsity inspired selection and recognition of iris images</title><author>Pillai, J.K. ; Patel, V.M. ; Chellappa, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-854e30b3403f88521637cc43fefeba3f37cc8aec63e291dbed62accf4655d38d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Degradation</topic><topic>Eyelids</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Performance evaluation</topic><topic>Reflection</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Pillai, J.K.</creatorcontrib><creatorcontrib>Patel, V.M.</creatorcontrib><creatorcontrib>Chellappa, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pillai, J.K.</au><au>Patel, V.M.</au><au>Chellappa, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparsity inspired selection and recognition of iris images</atitle><btitle>2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems</btitle><stitle>BTAS</stitle><date>2009-09</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424450195</isbn><isbn>9781424450190</isbn><eisbn>1424450209</eisbn><eisbn>9781424450206</eisbn><abstract>Iris images acquired from a partially cooperating subject often suffer from blur, occlusion due to eyelids, and specular reflections. The performance of existing iris recognition systems degrade significantly on these images. Hence it is essential to select good images from the incoming iris video stream, before they are input to the recognition algorithm. In this paper, we propose a sparsity based algorithm for selection of good iris images and their subsequent recognition. Unlike most existing algorithms for iris image selection, our method can handle segmentation errors and a wider range of acquisition artifacts common in iris image capture. We perform selection and recognition in a single step which is more efficient than devising separate specialized algorithms for the two. Recognition from partially cooperating users is a significant step towards deploying iris systems in a wide variety of applications.</abstract><pub>IEEE</pub><doi>10.1109/BTAS.2009.5339067</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424450195 |
ispartof | 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5339067 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Degradation Eyelids Feature extraction Image quality Image recognition Image segmentation Iris recognition Performance evaluation Reflection Streaming media |
title | Sparsity inspired selection and recognition of iris images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparsity%20inspired%20selection%20and%20recognition%20of%20iris%20images&rft.btitle=2009%20IEEE%203rd%20International%20Conference%20on%20Biometrics:%20Theory,%20Applications,%20and%20Systems&rft.au=Pillai,%20J.K.&rft.date=2009-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424450195&rft.isbn_list=9781424450190&rft_id=info:doi/10.1109/BTAS.2009.5339067&rft.eisbn=1424450209&rft.eisbn_list=9781424450206&rft_dat=%3Cieee_6IE%3E5339067%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1337-854e30b3403f88521637cc43fefeba3f37cc8aec63e291dbed62accf4655d38d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5339067&rfr_iscdi=true |