Loading…
Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications
We demonstrate a technique for the fabrication of single-mode perfluorinated polymer optical fiber (PPOF). The PPOF preform is composed of poly-methyl-methacrylate (PMMA)-based outer cladding and a graded-index multimode PPOF as the core. A photosensitive graded-index single-mode PPOF with a core di...
Saved in:
Published in: | IEEE photonics technology letters 2010-01, Vol.22 (2), p.106-108 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a technique for the fabrication of single-mode perfluorinated polymer optical fiber (PPOF). The PPOF preform is composed of poly-methyl-methacrylate (PMMA)-based outer cladding and a graded-index multimode PPOF as the core. A photosensitive graded-index single-mode PPOF with a core diameter of about 6.6 ¿m and cladding diameter of 400 ¿m was fabricated. The fiber has a cutoff wavelength of 854 nm and exhibits single-mode characteristics at wavelengths of 1310 and 1550 nm. The transmission loss is less than 0.2 dB/m in the wavelength range of 1410-1540 nm and less than 0.5 dB/m for wavelengths up to 1610 nm, significantly less than the typical transmission loss of ~100 dB/m for PMMA fiber. Another important feature of the PPOF is its low refractive index of 1.34, close to aqueous solution of biomaterials, permitting strong optical coupling for biomedical applications. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2009.2036377 |