Loading…
Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization
This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules ini...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules initially. The RSOIT2FS-ACO generates all rules online. The consequent part of each fuzzy rule is designed using Ant Colony Optimization (ACO). The ACO approach selects the consequent part from a set of candidate actions according to ant pheromone trails. The RSOIT2FS-ACO method is applied to a truck backing control. The proposed RSOIT2FS-ACO is compared with other reinforcement fuzzy systems to verify its efficiency and effectiveness. A comparison with type-1 fuzzy systems verifies the robustness of using type-2 fuzzy systems to noise. |
---|---|
ISSN: | 1062-922X 2577-1655 |
DOI: | 10.1109/ICSMC.2009.5346806 |