Loading…
Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization
This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules ini...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 776 |
container_issue | |
container_start_page | 771 |
container_title | |
container_volume | |
creator | Chia-Feng Juang Chia-Hung Hsu Chia-Feng Chuang |
description | This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules initially. The RSOIT2FS-ACO generates all rules online. The consequent part of each fuzzy rule is designed using Ant Colony Optimization (ACO). The ACO approach selects the consequent part from a set of candidate actions according to ant pheromone trails. The RSOIT2FS-ACO method is applied to a truck backing control. The proposed RSOIT2FS-ACO is compared with other reinforcement fuzzy systems to verify its efficiency and effectiveness. A comparison with type-1 fuzzy systems verifies the robustness of using type-2 fuzzy systems to noise. |
doi_str_mv | 10.1109/ICSMC.2009.5346806 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5346806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5346806</ieee_id><sourcerecordid>5346806</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-54b91e82a9d968877cfc0534a0e50e157dc7e91b3bc8382a815a0038cb8429393</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM2jEm3pD8DGP5By_YrtJYooVCqqRItgVznpTTHKo0oMKPl6ItENq1nMzJFmCLlhMGcM7N0y2Twncw5g50rI2EB8RmZWGya5lFxbac_JmCutIxYrdfHPE_ySjBnEPLKcv4_IZMAYC_FAuSKTtv0E4CCZGZO3F_RVXjcZllgFusEij9bNwVW-99WBLquAzbcr6LY7YsTp4qvvO7rp2oAl_fHhg7qhldVFXXW0PgZf-t4FX1fXZJS7osXZSafkdfGwTZ6i1fpxmdyvIs-0CpGSqWVouLN7GxujdZZnMMx1gAqQKb3PNFqWijQzYogZphyAMFlqJLfCiim5_eN6RNwdG1-6ptudDhO_CF5Y5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization</title><source>IEEE Xplore All Conference Series</source><creator>Chia-Feng Juang ; Chia-Hung Hsu ; Chia-Feng Chuang</creator><creatorcontrib>Chia-Feng Juang ; Chia-Hung Hsu ; Chia-Feng Chuang</creatorcontrib><description>This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules initially. The RSOIT2FS-ACO generates all rules online. The consequent part of each fuzzy rule is designed using Ant Colony Optimization (ACO). The ACO approach selects the consequent part from a set of candidate actions according to ant pheromone trails. The RSOIT2FS-ACO method is applied to a truck backing control. The proposed RSOIT2FS-ACO is compared with other reinforcement fuzzy systems to verify its efficiency and effectiveness. A comparison with type-1 fuzzy systems verifies the robustness of using type-2 fuzzy systems to noise.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781424427932</identifier><identifier>ISBN: 1424427932</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424427949</identifier><identifier>EISBN: 1424427940</identifier><identifier>DOI: 10.1109/ICSMC.2009.5346806</identifier><identifier>LCCN: 2008906680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Ant colony optimization ; Cybernetics ; Frequency selective surfaces ; Fuzzy control ; Fuzzy sets ; Fuzzy systems ; Noise robustness ; reinforcement learning ; Supervised learning ; type-2 fuzzy systems ; USA Councils</subject><ispartof>2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.771-776</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5346806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5346806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chia-Feng Juang</creatorcontrib><creatorcontrib>Chia-Hung Hsu</creatorcontrib><creatorcontrib>Chia-Feng Chuang</creatorcontrib><title>Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization</title><title>2009 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules initially. The RSOIT2FS-ACO generates all rules online. The consequent part of each fuzzy rule is designed using Ant Colony Optimization (ACO). The ACO approach selects the consequent part from a set of candidate actions according to ant pheromone trails. The RSOIT2FS-ACO method is applied to a truck backing control. The proposed RSOIT2FS-ACO is compared with other reinforcement fuzzy systems to verify its efficiency and effectiveness. A comparison with type-1 fuzzy systems verifies the robustness of using type-2 fuzzy systems to noise.</description><subject>Algorithm design and analysis</subject><subject>Ant colony optimization</subject><subject>Cybernetics</subject><subject>Frequency selective surfaces</subject><subject>Fuzzy control</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Noise robustness</subject><subject>reinforcement learning</subject><subject>Supervised learning</subject><subject>type-2 fuzzy systems</subject><subject>USA Councils</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781424427932</isbn><isbn>1424427932</isbn><isbn>9781424427949</isbn><isbn>1424427940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtOwzAURM2jEm3pD8DGP5By_YrtJYooVCqqRItgVznpTTHKo0oMKPl6ItENq1nMzJFmCLlhMGcM7N0y2Twncw5g50rI2EB8RmZWGya5lFxbac_JmCutIxYrdfHPE_ySjBnEPLKcv4_IZMAYC_FAuSKTtv0E4CCZGZO3F_RVXjcZllgFusEij9bNwVW-99WBLquAzbcr6LY7YsTp4qvvO7rp2oAl_fHhg7qhldVFXXW0PgZf-t4FX1fXZJS7osXZSafkdfGwTZ6i1fpxmdyvIs-0CpGSqWVouLN7GxujdZZnMMx1gAqQKb3PNFqWijQzYogZphyAMFlqJLfCiim5_eN6RNwdG1-6ptudDhO_CF5Y5Q</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Chia-Feng Juang</creator><creator>Chia-Hung Hsu</creator><creator>Chia-Feng Chuang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization</title><author>Chia-Feng Juang ; Chia-Hung Hsu ; Chia-Feng Chuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-54b91e82a9d968877cfc0534a0e50e157dc7e91b3bc8382a815a0038cb8429393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Ant colony optimization</topic><topic>Cybernetics</topic><topic>Frequency selective surfaces</topic><topic>Fuzzy control</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Noise robustness</topic><topic>reinforcement learning</topic><topic>Supervised learning</topic><topic>type-2 fuzzy systems</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Chia-Feng Juang</creatorcontrib><creatorcontrib>Chia-Hung Hsu</creatorcontrib><creatorcontrib>Chia-Feng Chuang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chia-Feng Juang</au><au>Chia-Hung Hsu</au><au>Chia-Feng Chuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization</atitle><btitle>2009 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2009-10</date><risdate>2009</risdate><spage>771</spage><epage>776</epage><pages>771-776</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781424427932</isbn><isbn>1424427932</isbn><eisbn>9781424427949</eisbn><eisbn>1424427940</eisbn><abstract>This paper proposes a Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses interval type-2 fuzzy sets in order to improve system robustness to noise. There are no fuzzy rules initially. The RSOIT2FS-ACO generates all rules online. The consequent part of each fuzzy rule is designed using Ant Colony Optimization (ACO). The ACO approach selects the consequent part from a set of candidate actions according to ant pheromone trails. The RSOIT2FS-ACO method is applied to a truck backing control. The proposed RSOIT2FS-ACO is compared with other reinforcement fuzzy systems to verify its efficiency and effectiveness. A comparison with type-1 fuzzy systems verifies the robustness of using type-2 fuzzy systems to noise.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2009.5346806</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, p.771-776 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_5346806 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Ant colony optimization Cybernetics Frequency selective surfaces Fuzzy control Fuzzy sets Fuzzy systems Noise robustness reinforcement learning Supervised learning type-2 fuzzy systems USA Councils |
title | Reinforcement Self-Organizing Interval Type-2 Fuzzy System with ant colony optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinforcement%20Self-Organizing%20Interval%20Type-2%20Fuzzy%20System%20with%20ant%20colony%20optimization&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Chia-Feng%20Juang&rft.date=2009-10&rft.spage=771&rft.epage=776&rft.pages=771-776&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781424427932&rft.isbn_list=1424427932&rft_id=info:doi/10.1109/ICSMC.2009.5346806&rft.eisbn=9781424427949&rft.eisbn_list=1424427940&rft_dat=%3Cieee_CHZPO%3E5346806%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-54b91e82a9d968877cfc0534a0e50e157dc7e91b3bc8382a815a0038cb8429393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5346806&rfr_iscdi=true |