Loading…

Technical Initial Problems and Automatic Transformation

In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is present...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaluza, V., Kopriva, J., Kunovsky, J., Sehnalova, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 80
container_issue
container_start_page 75
container_title
container_volume
creator Kaluza, V.
Kopriva, J.
Kunovsky, J.
Sehnalova, P.
description In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.
doi_str_mv 10.1109/CSSim.2009.31
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5350082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5350082</ieee_id><sourcerecordid>5350082</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9f6dedda0bb39820bd2bf28be489fd08e46296a1cfee5ce69e2c6e0a5e3a609a3</originalsourceid><addsrcrecordid>eNo9jEtLxDAURuMLHMcuXbnpH2i9SZo0dzkURwcGFKb7IY8bjPQhbV347x1RXB0-zsdh7I5DyTngQ3M4pL4UAFhKfsZuoNaoZI1KnLOV4FoXRkl-wTKsDa9EVanTV1z-OyGvWTbP7wDAwShlcMXqlvzbkLzt8t2QlnTi6zS6jvo5t0PIN5_L2Nsl-byd7DDHcfpZ43DLrqLtZsr-uGbt9rFtnov9y9Ou2eyLhLAUGHWgECw4J9EIcEG4KIyjymAMYKjSArXlPhIpTxpJeE1gFUmrAa1cs_vfbCKi48eUejt9HZVUAEbIb3uqS4s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Technical Initial Problems and Automatic Transformation</title><source>IEEE Xplore All Conference Series</source><creator>Kaluza, V. ; Kopriva, J. ; Kunovsky, J. ; Sehnalova, P.</creator><creatorcontrib>Kaluza, V. ; Kopriva, J. ; Kunovsky, J. ; Sehnalova, P.</creatorcontrib><description>In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.</description><identifier>ISSN: 2166-8523</identifier><identifier>ISBN: 9781424452002</identifier><identifier>ISBN: 1424452007</identifier><identifier>EISSN: 2166-8531</identifier><identifier>EISBN: 0769537952</identifier><identifier>EISBN: 9780769537955</identifier><identifier>DOI: 10.1109/CSSim.2009.31</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Computational modeling ; Differential equations ; Hydrogen ; Information technology ; numerical method ; order of Taylor series method ; Taylor series ; Taylor series method ; TKSL ; Writing</subject><ispartof>2009 International Conference on Computational Intelligence, Modelling and Simulation, 2009, p.75-80</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5350082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5350082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaluza, V.</creatorcontrib><creatorcontrib>Kopriva, J.</creatorcontrib><creatorcontrib>Kunovsky, J.</creatorcontrib><creatorcontrib>Sehnalova, P.</creatorcontrib><title>Technical Initial Problems and Automatic Transformation</title><title>2009 International Conference on Computational Intelligence, Modelling and Simulation</title><addtitle>CSSIM</addtitle><description>In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.</description><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Differential equations</subject><subject>Hydrogen</subject><subject>Information technology</subject><subject>numerical method</subject><subject>order of Taylor series method</subject><subject>Taylor series</subject><subject>Taylor series method</subject><subject>TKSL</subject><subject>Writing</subject><issn>2166-8523</issn><issn>2166-8531</issn><isbn>9781424452002</isbn><isbn>1424452007</isbn><isbn>0769537952</isbn><isbn>9780769537955</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jEtLxDAURuMLHMcuXbnpH2i9SZo0dzkURwcGFKb7IY8bjPQhbV347x1RXB0-zsdh7I5DyTngQ3M4pL4UAFhKfsZuoNaoZI1KnLOV4FoXRkl-wTKsDa9EVanTV1z-OyGvWTbP7wDAwShlcMXqlvzbkLzt8t2QlnTi6zS6jvo5t0PIN5_L2Nsl-byd7DDHcfpZ43DLrqLtZsr-uGbt9rFtnov9y9Ou2eyLhLAUGHWgECw4J9EIcEG4KIyjymAMYKjSArXlPhIpTxpJeE1gFUmrAa1cs_vfbCKi48eUejt9HZVUAEbIb3uqS4s</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Kaluza, V.</creator><creator>Kopriva, J.</creator><creator>Kunovsky, J.</creator><creator>Sehnalova, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Technical Initial Problems and Automatic Transformation</title><author>Kaluza, V. ; Kopriva, J. ; Kunovsky, J. ; Sehnalova, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9f6dedda0bb39820bd2bf28be489fd08e46296a1cfee5ce69e2c6e0a5e3a609a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Differential equations</topic><topic>Hydrogen</topic><topic>Information technology</topic><topic>numerical method</topic><topic>order of Taylor series method</topic><topic>Taylor series</topic><topic>Taylor series method</topic><topic>TKSL</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaluza, V.</creatorcontrib><creatorcontrib>Kopriva, J.</creatorcontrib><creatorcontrib>Kunovsky, J.</creatorcontrib><creatorcontrib>Sehnalova, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaluza, V.</au><au>Kopriva, J.</au><au>Kunovsky, J.</au><au>Sehnalova, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Technical Initial Problems and Automatic Transformation</atitle><btitle>2009 International Conference on Computational Intelligence, Modelling and Simulation</btitle><stitle>CSSIM</stitle><date>2009-09</date><risdate>2009</risdate><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>2166-8523</issn><eissn>2166-8531</eissn><isbn>9781424452002</isbn><isbn>1424452007</isbn><eisbn>0769537952</eisbn><eisbn>9780769537955</eisbn><abstract>In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.</abstract><pub>IEEE</pub><doi>10.1109/CSSim.2009.31</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-8523
ispartof 2009 International Conference on Computational Intelligence, Modelling and Simulation, 2009, p.75-80
issn 2166-8523
2166-8531
language eng
recordid cdi_ieee_primary_5350082
source IEEE Xplore All Conference Series
subjects Computational intelligence
Computational modeling
Differential equations
Hydrogen
Information technology
numerical method
order of Taylor series method
Taylor series
Taylor series method
TKSL
Writing
title Technical Initial Problems and Automatic Transformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Technical%20Initial%20Problems%20and%20Automatic%20Transformation&rft.btitle=2009%20International%20Conference%20on%20Computational%20Intelligence,%20Modelling%20and%20Simulation&rft.au=Kaluza,%20V.&rft.date=2009-09&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=2166-8523&rft.eissn=2166-8531&rft.isbn=9781424452002&rft.isbn_list=1424452007&rft_id=info:doi/10.1109/CSSim.2009.31&rft.eisbn=0769537952&rft.eisbn_list=9780769537955&rft_dat=%3Cieee_CHZPO%3E5350082%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9f6dedda0bb39820bd2bf28be489fd08e46296a1cfee5ce69e2c6e0a5e3a609a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5350082&rfr_iscdi=true