Loading…
Technical Initial Problems and Automatic Transformation
In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is present...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 80 |
container_issue | |
container_start_page | 75 |
container_title | |
container_volume | |
creator | Kaluza, V. Kopriva, J. Kunovsky, J. Sehnalova, P. |
description | In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with. |
doi_str_mv | 10.1109/CSSim.2009.31 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5350082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5350082</ieee_id><sourcerecordid>5350082</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9f6dedda0bb39820bd2bf28be489fd08e46296a1cfee5ce69e2c6e0a5e3a609a3</originalsourceid><addsrcrecordid>eNo9jEtLxDAURuMLHMcuXbnpH2i9SZo0dzkURwcGFKb7IY8bjPQhbV347x1RXB0-zsdh7I5DyTngQ3M4pL4UAFhKfsZuoNaoZI1KnLOV4FoXRkl-wTKsDa9EVanTV1z-OyGvWTbP7wDAwShlcMXqlvzbkLzt8t2QlnTi6zS6jvo5t0PIN5_L2Nsl-byd7DDHcfpZ43DLrqLtZsr-uGbt9rFtnov9y9Ou2eyLhLAUGHWgECw4J9EIcEG4KIyjymAMYKjSArXlPhIpTxpJeE1gFUmrAa1cs_vfbCKi48eUejt9HZVUAEbIb3uqS4s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Technical Initial Problems and Automatic Transformation</title><source>IEEE Xplore All Conference Series</source><creator>Kaluza, V. ; Kopriva, J. ; Kunovsky, J. ; Sehnalova, P.</creator><creatorcontrib>Kaluza, V. ; Kopriva, J. ; Kunovsky, J. ; Sehnalova, P.</creatorcontrib><description>In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.</description><identifier>ISSN: 2166-8523</identifier><identifier>ISBN: 9781424452002</identifier><identifier>ISBN: 1424452007</identifier><identifier>EISSN: 2166-8531</identifier><identifier>EISBN: 0769537952</identifier><identifier>EISBN: 9780769537955</identifier><identifier>DOI: 10.1109/CSSim.2009.31</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Computational modeling ; Differential equations ; Hydrogen ; Information technology ; numerical method ; order of Taylor series method ; Taylor series ; Taylor series method ; TKSL ; Writing</subject><ispartof>2009 International Conference on Computational Intelligence, Modelling and Simulation, 2009, p.75-80</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5350082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5350082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaluza, V.</creatorcontrib><creatorcontrib>Kopriva, J.</creatorcontrib><creatorcontrib>Kunovsky, J.</creatorcontrib><creatorcontrib>Sehnalova, P.</creatorcontrib><title>Technical Initial Problems and Automatic Transformation</title><title>2009 International Conference on Computational Intelligence, Modelling and Simulation</title><addtitle>CSSIM</addtitle><description>In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.</description><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Differential equations</subject><subject>Hydrogen</subject><subject>Information technology</subject><subject>numerical method</subject><subject>order of Taylor series method</subject><subject>Taylor series</subject><subject>Taylor series method</subject><subject>TKSL</subject><subject>Writing</subject><issn>2166-8523</issn><issn>2166-8531</issn><isbn>9781424452002</isbn><isbn>1424452007</isbn><isbn>0769537952</isbn><isbn>9780769537955</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jEtLxDAURuMLHMcuXbnpH2i9SZo0dzkURwcGFKb7IY8bjPQhbV347x1RXB0-zsdh7I5DyTngQ3M4pL4UAFhKfsZuoNaoZI1KnLOV4FoXRkl-wTKsDa9EVanTV1z-OyGvWTbP7wDAwShlcMXqlvzbkLzt8t2QlnTi6zS6jvo5t0PIN5_L2Nsl-byd7DDHcfpZ43DLrqLtZsr-uGbt9rFtnov9y9Ou2eyLhLAUGHWgECw4J9EIcEG4KIyjymAMYKjSArXlPhIpTxpJeE1gFUmrAa1cs_vfbCKi48eUejt9HZVUAEbIb3uqS4s</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Kaluza, V.</creator><creator>Kopriva, J.</creator><creator>Kunovsky, J.</creator><creator>Sehnalova, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200909</creationdate><title>Technical Initial Problems and Automatic Transformation</title><author>Kaluza, V. ; Kopriva, J. ; Kunovsky, J. ; Sehnalova, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9f6dedda0bb39820bd2bf28be489fd08e46296a1cfee5ce69e2c6e0a5e3a609a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Differential equations</topic><topic>Hydrogen</topic><topic>Information technology</topic><topic>numerical method</topic><topic>order of Taylor series method</topic><topic>Taylor series</topic><topic>Taylor series method</topic><topic>TKSL</topic><topic>Writing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaluza, V.</creatorcontrib><creatorcontrib>Kopriva, J.</creatorcontrib><creatorcontrib>Kunovsky, J.</creatorcontrib><creatorcontrib>Sehnalova, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaluza, V.</au><au>Kopriva, J.</au><au>Kunovsky, J.</au><au>Sehnalova, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Technical Initial Problems and Automatic Transformation</atitle><btitle>2009 International Conference on Computational Intelligence, Modelling and Simulation</btitle><stitle>CSSIM</stitle><date>2009-09</date><risdate>2009</risdate><spage>75</spage><epage>80</epage><pages>75-80</pages><issn>2166-8523</issn><eissn>2166-8531</eissn><isbn>9781424452002</isbn><isbn>1424452007</isbn><eisbn>0769537952</eisbn><eisbn>9780769537955</eisbn><abstract>In this paper an outline is given of historical and current developments in the application of recurrent Taylor series to the integration of systems of ordinary differential equations. Then an extremely accurate and fast method for the numerical solution of ordinary differential equations is presented. In general Taylor series method is not included or even mentioned in surveys on numerical integration techniques as the programs were written by mathematicians with the main objective of demonstrating the feasibility of the concept and with the goal of finding integration algorithms of very high accuracy. For this reason such programs should be looked upon as a stimulus for writing more advanced software employing Taylor series better able to compete with programs using other methods. An attempt in this direction is TKSL, a program the results of which will be dealt with.</abstract><pub>IEEE</pub><doi>10.1109/CSSim.2009.31</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-8523 |
ispartof | 2009 International Conference on Computational Intelligence, Modelling and Simulation, 2009, p.75-80 |
issn | 2166-8523 2166-8531 |
language | eng |
recordid | cdi_ieee_primary_5350082 |
source | IEEE Xplore All Conference Series |
subjects | Computational intelligence Computational modeling Differential equations Hydrogen Information technology numerical method order of Taylor series method Taylor series Taylor series method TKSL Writing |
title | Technical Initial Problems and Automatic Transformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Technical%20Initial%20Problems%20and%20Automatic%20Transformation&rft.btitle=2009%20International%20Conference%20on%20Computational%20Intelligence,%20Modelling%20and%20Simulation&rft.au=Kaluza,%20V.&rft.date=2009-09&rft.spage=75&rft.epage=80&rft.pages=75-80&rft.issn=2166-8523&rft.eissn=2166-8531&rft.isbn=9781424452002&rft.isbn_list=1424452007&rft_id=info:doi/10.1109/CSSim.2009.31&rft.eisbn=0769537952&rft.eisbn_list=9780769537955&rft_dat=%3Cieee_CHZPO%3E5350082%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9f6dedda0bb39820bd2bf28be489fd08e46296a1cfee5ce69e2c6e0a5e3a609a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5350082&rfr_iscdi=true |