Loading…
Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array
This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0...
Saved in:
Published in: | IEEE sensors journal 2010-01, Vol.10 (1), p.104-109 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433 |
container_end_page | 109 |
container_issue | 1 |
container_start_page | 104 |
container_title | IEEE sensors journal |
container_volume | 10 |
creator | Saraoglu, H.M. Kocan, M. |
description | This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%. |
doi_str_mv | 10.1109/JSEN.2009.2035769 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5352205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5352205</ieee_id><sourcerecordid>10_1109_JSEN_2009_2035769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHzJH-jMbZIledzmnMpUZAq-lTS9YZWulaQT6q-3ZcOXc8_DOZfDR8g1sAkAM7dPm-XLJGXM9MKlmpoTMgIpdQJK6NPBc5YIrj7PyUWMX4yBUVKNyPYOWwy7srZt2dS08XReNU1BV9XeNRHpGn-wSuY2YkHnAW27pbPaVl0sI807aunb3ob2ly5CF1tb0efShSa3la0d0g3WsQl0FoLtLsmZt1XEq-Mdk4_75fviIVm_rh4Xs3XiOIc2MUJ5BK-FlAC9N9w7z5XR4KeMMaEZd-C4yXMn0HKjtS6AF3nhZS5SwfmYwOFvvyPGgD77DuXOhi4Dlg2osgFVNqDKjqj6zs2hUyLif15ymaZM8j9XrmWl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Saraoglu, H.M. ; Kocan, M.</creator><creatorcontrib>Saraoglu, H.M. ; Kocan, M.</creatorcontrib><description>This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2009.2035769</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Blood ; Blood glucose level ; breath analysis ; Diseases ; electronic nose ; Electronic noses ; Gas detectors ; Humans ; Medical treatment ; quartz crystal microbalance (QCM) sensor ; Sensor arrays ; Sensor systems ; Sugar</subject><ispartof>IEEE sensors journal, 2010-01, Vol.10 (1), p.104-109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</citedby><cites>FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5352205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Saraoglu, H.M.</creatorcontrib><creatorcontrib>Kocan, M.</creatorcontrib><title>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.</description><subject>Artificial neural networks</subject><subject>Blood</subject><subject>Blood glucose level</subject><subject>breath analysis</subject><subject>Diseases</subject><subject>electronic nose</subject><subject>Electronic noses</subject><subject>Gas detectors</subject><subject>Humans</subject><subject>Medical treatment</subject><subject>quartz crystal microbalance (QCM) sensor</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sugar</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKc_QHzJH-jMbZIledzmnMpUZAq-lTS9YZWulaQT6q-3ZcOXc8_DOZfDR8g1sAkAM7dPm-XLJGXM9MKlmpoTMgIpdQJK6NPBc5YIrj7PyUWMX4yBUVKNyPYOWwy7srZt2dS08XReNU1BV9XeNRHpGn-wSuY2YkHnAW27pbPaVl0sI807aunb3ob2ly5CF1tb0efShSa3la0d0g3WsQl0FoLtLsmZt1XEq-Mdk4_75fviIVm_rh4Xs3XiOIc2MUJ5BK-FlAC9N9w7z5XR4KeMMaEZd-C4yXMn0HKjtS6AF3nhZS5SwfmYwOFvvyPGgD77DuXOhi4Dlg2osgFVNqDKjqj6zs2hUyLif15ymaZM8j9XrmWl</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Saraoglu, H.M.</creator><creator>Kocan, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201001</creationdate><title>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</title><author>Saraoglu, H.M. ; Kocan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Blood</topic><topic>Blood glucose level</topic><topic>breath analysis</topic><topic>Diseases</topic><topic>electronic nose</topic><topic>Electronic noses</topic><topic>Gas detectors</topic><topic>Humans</topic><topic>Medical treatment</topic><topic>quartz crystal microbalance (QCM) sensor</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saraoglu, H.M.</creatorcontrib><creatorcontrib>Kocan, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saraoglu, H.M.</au><au>Kocan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2010-01</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>104</spage><epage>109</epage><pages>104-109</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2009.2035769</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2010-01, Vol.10 (1), p.104-109 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_5352205 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Blood Blood glucose level breath analysis Diseases electronic nose Electronic noses Gas detectors Humans Medical treatment quartz crystal microbalance (QCM) sensor Sensor arrays Sensor systems Sugar |
title | Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Blood%20Glucose%20Level-Based%20Breath%20Analysis%20by%20a%20Quartz%20Crystal%20Microbalance%20Sensor%20Array&rft.jtitle=IEEE%20sensors%20journal&rft.au=Saraoglu,%20H.M.&rft.date=2010-01&rft.volume=10&rft.issue=1&rft.spage=104&rft.epage=109&rft.pages=104-109&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2009.2035769&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2009_2035769%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5352205&rfr_iscdi=true |