Loading…

Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array

This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2010-01, Vol.10 (1), p.104-109
Main Authors: Saraoglu, H.M., Kocan, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433
cites cdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433
container_end_page 109
container_issue 1
container_start_page 104
container_title IEEE sensors journal
container_volume 10
creator Saraoglu, H.M.
Kocan, M.
description This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.
doi_str_mv 10.1109/JSEN.2009.2035769
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5352205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5352205</ieee_id><sourcerecordid>10_1109_JSEN_2009_2035769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHzJH-jMbZIledzmnMpUZAq-lTS9YZWulaQT6q-3ZcOXc8_DOZfDR8g1sAkAM7dPm-XLJGXM9MKlmpoTMgIpdQJK6NPBc5YIrj7PyUWMX4yBUVKNyPYOWwy7srZt2dS08XReNU1BV9XeNRHpGn-wSuY2YkHnAW27pbPaVl0sI807aunb3ob2ly5CF1tb0efShSa3la0d0g3WsQl0FoLtLsmZt1XEq-Mdk4_75fviIVm_rh4Xs3XiOIc2MUJ5BK-FlAC9N9w7z5XR4KeMMaEZd-C4yXMn0HKjtS6AF3nhZS5SwfmYwOFvvyPGgD77DuXOhi4Dlg2osgFVNqDKjqj6zs2hUyLif15ymaZM8j9XrmWl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Saraoglu, H.M. ; Kocan, M.</creator><creatorcontrib>Saraoglu, H.M. ; Kocan, M.</creatorcontrib><description>This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2009.2035769</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Blood ; Blood glucose level ; breath analysis ; Diseases ; electronic nose ; Electronic noses ; Gas detectors ; Humans ; Medical treatment ; quartz crystal microbalance (QCM) sensor ; Sensor arrays ; Sensor systems ; Sugar</subject><ispartof>IEEE sensors journal, 2010-01, Vol.10 (1), p.104-109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</citedby><cites>FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5352205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Saraoglu, H.M.</creatorcontrib><creatorcontrib>Kocan, M.</creatorcontrib><title>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.</description><subject>Artificial neural networks</subject><subject>Blood</subject><subject>Blood glucose level</subject><subject>breath analysis</subject><subject>Diseases</subject><subject>electronic nose</subject><subject>Electronic noses</subject><subject>Gas detectors</subject><subject>Humans</subject><subject>Medical treatment</subject><subject>quartz crystal microbalance (QCM) sensor</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sugar</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKc_QHzJH-jMbZIledzmnMpUZAq-lTS9YZWulaQT6q-3ZcOXc8_DOZfDR8g1sAkAM7dPm-XLJGXM9MKlmpoTMgIpdQJK6NPBc5YIrj7PyUWMX4yBUVKNyPYOWwy7srZt2dS08XReNU1BV9XeNRHpGn-wSuY2YkHnAW27pbPaVl0sI807aunb3ob2ly5CF1tb0efShSa3la0d0g3WsQl0FoLtLsmZt1XEq-Mdk4_75fviIVm_rh4Xs3XiOIc2MUJ5BK-FlAC9N9w7z5XR4KeMMaEZd-C4yXMn0HKjtS6AF3nhZS5SwfmYwOFvvyPGgD77DuXOhi4Dlg2osgFVNqDKjqj6zs2hUyLif15ymaZM8j9XrmWl</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Saraoglu, H.M.</creator><creator>Kocan, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201001</creationdate><title>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</title><author>Saraoglu, H.M. ; Kocan, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Blood</topic><topic>Blood glucose level</topic><topic>breath analysis</topic><topic>Diseases</topic><topic>electronic nose</topic><topic>Electronic noses</topic><topic>Gas detectors</topic><topic>Humans</topic><topic>Medical treatment</topic><topic>quartz crystal microbalance (QCM) sensor</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saraoglu, H.M.</creatorcontrib><creatorcontrib>Kocan, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saraoglu, H.M.</au><au>Kocan, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2010-01</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>104</spage><epage>109</epage><pages>104-109</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper aims to determine human blood glucose levels through analyzing the acetone present in exhaled breath as a noninvasive method with the help of an electronic nose system based on quartz crystal microbalance (QCM) sensors. The amount of acetone vapor which is the marker of blood glucose is 0.1-10 ppm in human expiration. In order for the QCM sensors to sense low levels of acetone concentration, a condenser containing zeolite absorbent ingredients is used in the experiment mechanism. The QCM sensor data obtained from breath is compared with blood glucose value. A data set of 40 volunteers with blood glucose values ranging from 84.83 mg/dl to 334 mg/dl was examined in this paper. An artificial neural network (ANN) trained using the Levenberg-Marquardt (LMNN) algorithm was developed. Data from 31 of the volunteers was used for training the ANN and data from nine volunteers was reserved for testing. Eventually, result of the study has an error of 20.13%.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2009.2035769</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2010-01, Vol.10 (1), p.104-109
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_5352205
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Blood
Blood glucose level
breath analysis
Diseases
electronic nose
Electronic noses
Gas detectors
Humans
Medical treatment
quartz crystal microbalance (QCM) sensor
Sensor arrays
Sensor systems
Sugar
title Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Blood%20Glucose%20Level-Based%20Breath%20Analysis%20by%20a%20Quartz%20Crystal%20Microbalance%20Sensor%20Array&rft.jtitle=IEEE%20sensors%20journal&rft.au=Saraoglu,%20H.M.&rft.date=2010-01&rft.volume=10&rft.issue=1&rft.spage=104&rft.epage=109&rft.pages=104-109&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2009.2035769&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2009_2035769%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-947fe1f84551147f93fcf37981f60004803c1c39bbc4ea39888d13dbdf5b42433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5352205&rfr_iscdi=true