Loading…

Operant conditioning automata model and a bionic autonomous learning process

This paper presents an operant conditioning automata model (hereinafter referred to ¿OCM¿), and designs a bionic autonomous learning method which can be used to describe and simulate a bionic autonomous learning process. The model can be considered as an active learning permitting to select a better...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaogang Ruan, Yuanyuan Gao, Hongjun Song
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 204
container_issue
container_start_page 200
container_title
container_volume 2
creator Xiaogang Ruan
Yuanyuan Gao
Hongjun Song
description This paper presents an operant conditioning automata model (hereinafter referred to ¿OCM¿), and designs a bionic autonomous learning method which can be used to describe and simulate a bionic autonomous learning process. The model can be considered as an active learning permitting to select a better action according to psychology behavior propensity, and the aim is to learn to find the optimal action finally. During the learning process, the system selects an action randomly according to the probability distribution of action selection, which is updated by the behavior propensity from the environment. We apply our model on skinner-pigeon experiment. In simulation, we confirmed that this model could successfully simulate operant conditioning.
doi_str_mv 10.1109/ICICISYS.2009.5358370
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5358370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5358370</ieee_id><sourcerecordid>5358370</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-76329d41d9aca29e9378132e0e8cd8903a30e7da624439192c8eb94b8bf4f0953</originalsourceid><addsrcrecordid>eNpNUMFKw0AQXZGCWvsFIuwPNO7u7DY7RylqC4EeqgdPZZKdSqTJhmx68O9Naw_OHIbHezzmPSEetcq0Vvi0Xo67_dxmRinMHDgPuboSM8y9tsZam4PX1_-xs3oi7k5yVE6juhGzlL7VONaBNnArik3HPbWDrGIb6qGObd1-SToOsaGBZBMDHyS1QZIsT2R15trYxGOSB6b-rO_6WHFK92Kyp0Pi2eVOxcfry_tyNS82b-vlczGvde6Geb4Ag8HqgFSRQUYYHwbDin0VPCogUJwHWowZADWaynOJtvTl3u4VOpiKhz_fmpl3XV831P_sLoXAL9V2UuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Operant conditioning automata model and a bionic autonomous learning process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaogang Ruan ; Yuanyuan Gao ; Hongjun Song</creator><creatorcontrib>Xiaogang Ruan ; Yuanyuan Gao ; Hongjun Song</creatorcontrib><description>This paper presents an operant conditioning automata model (hereinafter referred to ¿OCM¿), and designs a bionic autonomous learning method which can be used to describe and simulate a bionic autonomous learning process. The model can be considered as an active learning permitting to select a better action according to psychology behavior propensity, and the aim is to learn to find the optimal action finally. During the learning process, the system selects an action randomly according to the probability distribution of action selection, which is updated by the behavior propensity from the environment. We apply our model on skinner-pigeon experiment. In simulation, we confirmed that this model could successfully simulate operant conditioning.</description><identifier>ISBN: 9781424447541</identifier><identifier>ISBN: 1424447542</identifier><identifier>EISBN: 9781424447381</identifier><identifier>EISBN: 1424447380</identifier><identifier>DOI: 10.1109/ICICISYS.2009.5358370</identifier><identifier>LCCN: 2009905190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Artificial intelligence ; Bionic autonomous learning process ; Humanoid robots ; Intelligent robots ; Learning automata ; Mathematical model ; Operant conditioning automata model ; Paper technology ; Probability distribution ; Probability distribution of action selection ; Psychology ; Robotics and automation ; Skinner-pigeon experiment ; styling</subject><ispartof>2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, Vol.2, p.200-204</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5358370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27899,54892</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5358370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaogang Ruan</creatorcontrib><creatorcontrib>Yuanyuan Gao</creatorcontrib><creatorcontrib>Hongjun Song</creatorcontrib><title>Operant conditioning automata model and a bionic autonomous learning process</title><title>2009 IEEE International Conference on Intelligent Computing and Intelligent Systems</title><addtitle>ICICISYS</addtitle><description>This paper presents an operant conditioning automata model (hereinafter referred to ¿OCM¿), and designs a bionic autonomous learning method which can be used to describe and simulate a bionic autonomous learning process. The model can be considered as an active learning permitting to select a better action according to psychology behavior propensity, and the aim is to learn to find the optimal action finally. During the learning process, the system selects an action randomly according to the probability distribution of action selection, which is updated by the behavior propensity from the environment. We apply our model on skinner-pigeon experiment. In simulation, we confirmed that this model could successfully simulate operant conditioning.</description><subject>Animals</subject><subject>Artificial intelligence</subject><subject>Bionic autonomous learning process</subject><subject>Humanoid robots</subject><subject>Intelligent robots</subject><subject>Learning automata</subject><subject>Mathematical model</subject><subject>Operant conditioning automata model</subject><subject>Paper technology</subject><subject>Probability distribution</subject><subject>Probability distribution of action selection</subject><subject>Psychology</subject><subject>Robotics and automation</subject><subject>Skinner-pigeon experiment</subject><subject>styling</subject><isbn>9781424447541</isbn><isbn>1424447542</isbn><isbn>9781424447381</isbn><isbn>1424447380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNUMFKw0AQXZGCWvsFIuwPNO7u7DY7RylqC4EeqgdPZZKdSqTJhmx68O9Naw_OHIbHezzmPSEetcq0Vvi0Xo67_dxmRinMHDgPuboSM8y9tsZam4PX1_-xs3oi7k5yVE6juhGzlL7VONaBNnArik3HPbWDrGIb6qGObd1-SToOsaGBZBMDHyS1QZIsT2R15trYxGOSB6b-rO_6WHFK92Kyp0Pi2eVOxcfry_tyNS82b-vlczGvde6Geb4Ag8HqgFSRQUYYHwbDin0VPCogUJwHWowZADWaynOJtvTl3u4VOpiKhz_fmpl3XV831P_sLoXAL9V2UuQ</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Xiaogang Ruan</creator><creator>Yuanyuan Gao</creator><creator>Hongjun Song</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Operant conditioning automata model and a bionic autonomous learning process</title><author>Xiaogang Ruan ; Yuanyuan Gao ; Hongjun Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-76329d41d9aca29e9378132e0e8cd8903a30e7da624439192c8eb94b8bf4f0953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Artificial intelligence</topic><topic>Bionic autonomous learning process</topic><topic>Humanoid robots</topic><topic>Intelligent robots</topic><topic>Learning automata</topic><topic>Mathematical model</topic><topic>Operant conditioning automata model</topic><topic>Paper technology</topic><topic>Probability distribution</topic><topic>Probability distribution of action selection</topic><topic>Psychology</topic><topic>Robotics and automation</topic><topic>Skinner-pigeon experiment</topic><topic>styling</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaogang Ruan</creatorcontrib><creatorcontrib>Yuanyuan Gao</creatorcontrib><creatorcontrib>Hongjun Song</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaogang Ruan</au><au>Yuanyuan Gao</au><au>Hongjun Song</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Operant conditioning automata model and a bionic autonomous learning process</atitle><btitle>2009 IEEE International Conference on Intelligent Computing and Intelligent Systems</btitle><stitle>ICICISYS</stitle><date>2009-11</date><risdate>2009</risdate><volume>2</volume><spage>200</spage><epage>204</epage><pages>200-204</pages><isbn>9781424447541</isbn><isbn>1424447542</isbn><eisbn>9781424447381</eisbn><eisbn>1424447380</eisbn><abstract>This paper presents an operant conditioning automata model (hereinafter referred to ¿OCM¿), and designs a bionic autonomous learning method which can be used to describe and simulate a bionic autonomous learning process. The model can be considered as an active learning permitting to select a better action according to psychology behavior propensity, and the aim is to learn to find the optimal action finally. During the learning process, the system selects an action randomly according to the probability distribution of action selection, which is updated by the behavior propensity from the environment. We apply our model on skinner-pigeon experiment. In simulation, we confirmed that this model could successfully simulate operant conditioning.</abstract><pub>IEEE</pub><doi>10.1109/ICICISYS.2009.5358370</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424447541
ispartof 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, Vol.2, p.200-204
issn
language eng
recordid cdi_ieee_primary_5358370
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animals
Artificial intelligence
Bionic autonomous learning process
Humanoid robots
Intelligent robots
Learning automata
Mathematical model
Operant conditioning automata model
Paper technology
Probability distribution
Probability distribution of action selection
Psychology
Robotics and automation
Skinner-pigeon experiment
styling
title Operant conditioning automata model and a bionic autonomous learning process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T04%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Operant%20conditioning%20automata%20model%20and%20a%20bionic%20autonomous%20learning%20process&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Intelligent%20Computing%20and%20Intelligent%20Systems&rft.au=Xiaogang%20Ruan&rft.date=2009-11&rft.volume=2&rft.spage=200&rft.epage=204&rft.pages=200-204&rft.isbn=9781424447541&rft.isbn_list=1424447542&rft_id=info:doi/10.1109/ICICISYS.2009.5358370&rft.eisbn=9781424447381&rft.eisbn_list=1424447380&rft_dat=%3Cieee_6IE%3E5358370%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-76329d41d9aca29e9378132e0e8cd8903a30e7da624439192c8eb94b8bf4f0953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5358370&rfr_iscdi=true