Loading…

Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning

In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation...

Full description

Saved in:
Bibliographic Details
Main Authors: Momma, M., Morinaga, S., Komura, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 883
container_issue
container_start_page 878
container_title
container_volume
creator Momma, M.
Morinaga, S.
Komura, D.
description In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.
doi_str_mv 10.1109/ICDM.2009.124
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5360327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360327</ieee_id><sourcerecordid>5360327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-21be696fffb604afbb324ee43b3c03df22325e40598659810e48bfaa8216ba4b3</originalsourceid><addsrcrecordid>eNotjE1PAjEURetXIiBLV276BwZf29dOuzQj6iQQXeDKBWmHV1MDg5mpRP69oC5u7j3JyWXsWsBECHC3dXU_n0gANxEST9gQSuO0sk67UzaQqsTCojVnbOxKK1AiaolSnrOB0BoKLK25ZMO-_wBQxigYsLeXbrvZ5tS-88U2-zWfxpiaRG2z56nlC_rOvFp_9Zm6o7NLnteH7XPaEfftitftEZtfnlPuUsNn5Lv2YF-xi-jXPY3_e8ReH6aL6qmYPT_W1d2sSKLUuZAikHEmxhgMoI8hKIlEqIJqQK2ilEpqQtDOmkMEENoQvbdSmOAxqBG7-ftNRLT87NLGd_ulVgaULNUPckFWsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</title><source>IEEE Xplore All Conference Series</source><creator>Momma, M. ; Morinaga, S. ; Komura, D.</creator><creatorcontrib>Momma, M. ; Morinaga, S. ; Komura, D.</creatorcontrib><description>In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 9781424452422</identifier><identifier>ISBN: 1424452422</identifier><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 0769538959</identifier><identifier>EISBN: 9780769538952</identifier><identifier>DOI: 10.1109/ICDM.2009.124</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Data mining ; data preprocessing ; Engines ; Feedback ; interactive system ; Iterative algorithms ; Laboratories ; Learning systems ; Man machine systems ; metric learning ; National electric code ; Visualization</subject><ispartof>2009 Ninth IEEE International Conference on Data Mining, 2009, p.878-883</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Momma, M.</creatorcontrib><creatorcontrib>Morinaga, S.</creatorcontrib><creatorcontrib>Komura, D.</creatorcontrib><title>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</title><title>2009 Ninth IEEE International Conference on Data Mining</title><addtitle>ICDM</addtitle><description>In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.</description><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>data preprocessing</subject><subject>Engines</subject><subject>Feedback</subject><subject>interactive system</subject><subject>Iterative algorithms</subject><subject>Laboratories</subject><subject>Learning systems</subject><subject>Man machine systems</subject><subject>metric learning</subject><subject>National electric code</subject><subject>Visualization</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>9781424452422</isbn><isbn>1424452422</isbn><isbn>0769538959</isbn><isbn>9780769538952</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1PAjEURetXIiBLV276BwZf29dOuzQj6iQQXeDKBWmHV1MDg5mpRP69oC5u7j3JyWXsWsBECHC3dXU_n0gANxEST9gQSuO0sk67UzaQqsTCojVnbOxKK1AiaolSnrOB0BoKLK25ZMO-_wBQxigYsLeXbrvZ5tS-88U2-zWfxpiaRG2z56nlC_rOvFp_9Zm6o7NLnteH7XPaEfftitftEZtfnlPuUsNn5Lv2YF-xi-jXPY3_e8ReH6aL6qmYPT_W1d2sSKLUuZAikHEmxhgMoI8hKIlEqIJqQK2ilEpqQtDOmkMEENoQvbdSmOAxqBG7-ftNRLT87NLGd_ulVgaULNUPckFWsg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Momma, M.</creator><creator>Morinaga, S.</creator><creator>Komura, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</title><author>Momma, M. ; Morinaga, S. ; Komura, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-21be696fffb604afbb324ee43b3c03df22325e40598659810e48bfaa8216ba4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>data preprocessing</topic><topic>Engines</topic><topic>Feedback</topic><topic>interactive system</topic><topic>Iterative algorithms</topic><topic>Laboratories</topic><topic>Learning systems</topic><topic>Man machine systems</topic><topic>metric learning</topic><topic>National electric code</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Momma, M.</creatorcontrib><creatorcontrib>Morinaga, S.</creatorcontrib><creatorcontrib>Komura, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Momma, M.</au><au>Morinaga, S.</au><au>Komura, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</atitle><btitle>2009 Ninth IEEE International Conference on Data Mining</btitle><stitle>ICDM</stitle><date>2009-12</date><risdate>2009</risdate><spage>878</spage><epage>883</epage><pages>878-883</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>9781424452422</isbn><isbn>1424452422</isbn><eisbn>0769538959</eisbn><eisbn>9780769538952</eisbn><abstract>In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2009.124</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-4786
ispartof 2009 Ninth IEEE International Conference on Data Mining, 2009, p.878-883
issn 1550-4786
2374-8486
language eng
recordid cdi_ieee_primary_5360327
source IEEE Xplore All Conference Series
subjects Clustering algorithms
Data mining
data preprocessing
Engines
Feedback
interactive system
Iterative algorithms
Laboratories
Learning systems
Man machine systems
metric learning
National electric code
Visualization
title Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Promoting%20Total%20Efficiency%20in%20Text%20Clustering%20via%20Iterative%20and%20Interactive%20Metric%20Learning&rft.btitle=2009%20Ninth%20IEEE%20International%20Conference%20on%20Data%20Mining&rft.au=Momma,%20M.&rft.date=2009-12&rft.spage=878&rft.epage=883&rft.pages=878-883&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=9781424452422&rft.isbn_list=1424452422&rft_id=info:doi/10.1109/ICDM.2009.124&rft.eisbn=0769538959&rft.eisbn_list=9780769538952&rft_dat=%3Cieee_CHZPO%3E5360327%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-21be696fffb604afbb324ee43b3c03df22325e40598659810e48bfaa8216ba4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360327&rfr_iscdi=true