Loading…
Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning
In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 883 |
container_issue | |
container_start_page | 878 |
container_title | |
container_volume | |
creator | Momma, M. Morinaga, S. Komura, D. |
description | In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric. |
doi_str_mv | 10.1109/ICDM.2009.124 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5360327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360327</ieee_id><sourcerecordid>5360327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-21be696fffb604afbb324ee43b3c03df22325e40598659810e48bfaa8216ba4b3</originalsourceid><addsrcrecordid>eNotjE1PAjEURetXIiBLV276BwZf29dOuzQj6iQQXeDKBWmHV1MDg5mpRP69oC5u7j3JyWXsWsBECHC3dXU_n0gANxEST9gQSuO0sk67UzaQqsTCojVnbOxKK1AiaolSnrOB0BoKLK25ZMO-_wBQxigYsLeXbrvZ5tS-88U2-zWfxpiaRG2z56nlC_rOvFp_9Zm6o7NLnteH7XPaEfftitftEZtfnlPuUsNn5Lv2YF-xi-jXPY3_e8ReH6aL6qmYPT_W1d2sSKLUuZAikHEmxhgMoI8hKIlEqIJqQK2ilEpqQtDOmkMEENoQvbdSmOAxqBG7-ftNRLT87NLGd_ulVgaULNUPckFWsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</title><source>IEEE Xplore All Conference Series</source><creator>Momma, M. ; Morinaga, S. ; Komura, D.</creator><creatorcontrib>Momma, M. ; Morinaga, S. ; Komura, D.</creatorcontrib><description>In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 9781424452422</identifier><identifier>ISBN: 1424452422</identifier><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 0769538959</identifier><identifier>EISBN: 9780769538952</identifier><identifier>DOI: 10.1109/ICDM.2009.124</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Data mining ; data preprocessing ; Engines ; Feedback ; interactive system ; Iterative algorithms ; Laboratories ; Learning systems ; Man machine systems ; metric learning ; National electric code ; Visualization</subject><ispartof>2009 Ninth IEEE International Conference on Data Mining, 2009, p.878-883</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Momma, M.</creatorcontrib><creatorcontrib>Morinaga, S.</creatorcontrib><creatorcontrib>Komura, D.</creatorcontrib><title>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</title><title>2009 Ninth IEEE International Conference on Data Mining</title><addtitle>ICDM</addtitle><description>In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.</description><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>data preprocessing</subject><subject>Engines</subject><subject>Feedback</subject><subject>interactive system</subject><subject>Iterative algorithms</subject><subject>Laboratories</subject><subject>Learning systems</subject><subject>Man machine systems</subject><subject>metric learning</subject><subject>National electric code</subject><subject>Visualization</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>9781424452422</isbn><isbn>1424452422</isbn><isbn>0769538959</isbn><isbn>9780769538952</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1PAjEURetXIiBLV276BwZf29dOuzQj6iQQXeDKBWmHV1MDg5mpRP69oC5u7j3JyWXsWsBECHC3dXU_n0gANxEST9gQSuO0sk67UzaQqsTCojVnbOxKK1AiaolSnrOB0BoKLK25ZMO-_wBQxigYsLeXbrvZ5tS-88U2-zWfxpiaRG2z56nlC_rOvFp_9Zm6o7NLnteH7XPaEfftitftEZtfnlPuUsNn5Lv2YF-xi-jXPY3_e8ReH6aL6qmYPT_W1d2sSKLUuZAikHEmxhgMoI8hKIlEqIJqQK2ilEpqQtDOmkMEENoQvbdSmOAxqBG7-ftNRLT87NLGd_ulVgaULNUPckFWsg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Momma, M.</creator><creator>Morinaga, S.</creator><creator>Komura, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</title><author>Momma, M. ; Morinaga, S. ; Komura, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-21be696fffb604afbb324ee43b3c03df22325e40598659810e48bfaa8216ba4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>data preprocessing</topic><topic>Engines</topic><topic>Feedback</topic><topic>interactive system</topic><topic>Iterative algorithms</topic><topic>Laboratories</topic><topic>Learning systems</topic><topic>Man machine systems</topic><topic>metric learning</topic><topic>National electric code</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Momma, M.</creatorcontrib><creatorcontrib>Morinaga, S.</creatorcontrib><creatorcontrib>Komura, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Momma, M.</au><au>Morinaga, S.</au><au>Komura, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning</atitle><btitle>2009 Ninth IEEE International Conference on Data Mining</btitle><stitle>ICDM</stitle><date>2009-12</date><risdate>2009</risdate><spage>878</spage><epage>883</epage><pages>878-883</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>9781424452422</isbn><isbn>1424452422</isbn><eisbn>0769538959</eisbn><eisbn>9780769538952</eisbn><abstract>In this paper, we propose a framework to make the text clustering process, as a whole, efficient. In a real text clustering task, an analyst usually has some expectation on the results in mind. However, a single run of a clustering algorithm on the preprocessed data would not satisfy the expectation. Then the analyst faces labor-intensive trials for improving the results that involve repetitive feature refinement and parameter tuning. We develop the Iterative and Interactive Metric Learning System (IIMLS) for addressing the challenge. Specifically, IIMLS allows analysts to input feedback on a current clustering result. Given the feedback, IIMLS optimizes metric in the feature space so that the clustering algorithm applied with the refined metric would reflect the feedback. As a byproduct, learned metric may be used for a similar dataset. Illustrative examples on a real-world dataset show IIMLS can dramatically improve efficiency of a text clustering task. The learned ¿knowledge¿, or the metric, is visualized for gaining insights of the optimized feature metric.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2009.124</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | 2009 Ninth IEEE International Conference on Data Mining, 2009, p.878-883 |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_5360327 |
source | IEEE Xplore All Conference Series |
subjects | Clustering algorithms Data mining data preprocessing Engines Feedback interactive system Iterative algorithms Laboratories Learning systems Man machine systems metric learning National electric code Visualization |
title | Promoting Total Efficiency in Text Clustering via Iterative and Interactive Metric Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Promoting%20Total%20Efficiency%20in%20Text%20Clustering%20via%20Iterative%20and%20Interactive%20Metric%20Learning&rft.btitle=2009%20Ninth%20IEEE%20International%20Conference%20on%20Data%20Mining&rft.au=Momma,%20M.&rft.date=2009-12&rft.spage=878&rft.epage=883&rft.pages=878-883&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=9781424452422&rft.isbn_list=1424452422&rft_id=info:doi/10.1109/ICDM.2009.124&rft.eisbn=0769538959&rft.eisbn_list=9780769538952&rft_dat=%3Cieee_CHZPO%3E5360327%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-21be696fffb604afbb324ee43b3c03df22325e40598659810e48bfaa8216ba4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360327&rfr_iscdi=true |