Loading…

Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data

Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool...

Full description

Saved in:
Bibliographic Details
Main Authors: Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Doutriaux, C., Pascucci, V., Johnson, C.R.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3
cites
container_end_page 240
container_issue
container_start_page 233
container_title
container_volume
creator Potter, K.
Wilson, A.
Bremer, P.-T.
Williams, D.
Doutriaux, C.
Pascucci, V.
Johnson, C.R.
description Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.
doi_str_mv 10.1109/ICDMW.2009.55
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5360497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360497</ieee_id><sourcerecordid>5360497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3</originalsourceid><addsrcrecordid>eNo9jMlOw0AQRIdNIgQfOXGZH3CY6dnc3KIsEMmIA9sxapseYbBjZDtC8PVEYjmVql5VCXGm1URrhRer2fzmaQJK4cS5PZFgyFTw6AwqCPtiBCa4FMHhgTjRFqx1JrP28B8YOBZJ378qpTQaiwgjkS82PTdFzelj1V_KqVx21PBH273J2HZyeGF5N9BQ9UNVUi13pS3V1dcuaTeyjfJvLuc00Kk4ilT3nPzqWDwsF_ez6zS_vVrNpnlagsYhZQ8YERnYQWldKLyhLD5nO2M5sGZw0fjCoSVGDyqUigtyMQtMnimasTj_-a2Yef3eVQ11n2tnvLIYzDc8C1Hg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</title><source>IEEE Xplore All Conference Series</source><creator>Potter, K. ; Wilson, A. ; Bremer, P.-T. ; Williams, D. ; Doutriaux, C. ; Pascucci, V. ; Johnson, C.R.</creator><creatorcontrib>Potter, K. ; Wilson, A. ; Bremer, P.-T. ; Williams, D. ; Doutriaux, C. ; Pascucci, V. ; Johnson, C.R.</creatorcontrib><description>Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.</description><identifier>ISSN: 2375-9232</identifier><identifier>ISBN: 1424453844</identifier><identifier>ISBN: 9781424453849</identifier><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 9780769539027</identifier><identifier>EISBN: 0769539025</identifier><identifier>DOI: 10.1109/ICDMW.2009.55</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data analysis ; Data visualization ; Displays ; Laboratories ; Meteorology ; Numerical models ; Predictive models ; Uncertainty ; Weather forecasting</subject><ispartof>2009 IEEE International Conference on Data Mining Workshops, 2009, p.233-240</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Potter, K.</creatorcontrib><creatorcontrib>Wilson, A.</creatorcontrib><creatorcontrib>Bremer, P.-T.</creatorcontrib><creatorcontrib>Williams, D.</creatorcontrib><creatorcontrib>Doutriaux, C.</creatorcontrib><creatorcontrib>Pascucci, V.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><title>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</title><title>2009 IEEE International Conference on Data Mining Workshops</title><addtitle>ICDMW</addtitle><description>Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.</description><subject>Computational modeling</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Displays</subject><subject>Laboratories</subject><subject>Meteorology</subject><subject>Numerical models</subject><subject>Predictive models</subject><subject>Uncertainty</subject><subject>Weather forecasting</subject><issn>2375-9232</issn><issn>2375-9259</issn><isbn>1424453844</isbn><isbn>9781424453849</isbn><isbn>9780769539027</isbn><isbn>0769539025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jMlOw0AQRIdNIgQfOXGZH3CY6dnc3KIsEMmIA9sxapseYbBjZDtC8PVEYjmVql5VCXGm1URrhRer2fzmaQJK4cS5PZFgyFTw6AwqCPtiBCa4FMHhgTjRFqx1JrP28B8YOBZJ378qpTQaiwgjkS82PTdFzelj1V_KqVx21PBH273J2HZyeGF5N9BQ9UNVUi13pS3V1dcuaTeyjfJvLuc00Kk4ilT3nPzqWDwsF_ez6zS_vVrNpnlagsYhZQ8YERnYQWldKLyhLD5nO2M5sGZw0fjCoSVGDyqUigtyMQtMnimasTj_-a2Yef3eVQ11n2tnvLIYzDc8C1Hg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Potter, K.</creator><creator>Wilson, A.</creator><creator>Bremer, P.-T.</creator><creator>Williams, D.</creator><creator>Doutriaux, C.</creator><creator>Pascucci, V.</creator><creator>Johnson, C.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</title><author>Potter, K. ; Wilson, A. ; Bremer, P.-T. ; Williams, D. ; Doutriaux, C. ; Pascucci, V. ; Johnson, C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational modeling</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Displays</topic><topic>Laboratories</topic><topic>Meteorology</topic><topic>Numerical models</topic><topic>Predictive models</topic><topic>Uncertainty</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Potter, K.</creatorcontrib><creatorcontrib>Wilson, A.</creatorcontrib><creatorcontrib>Bremer, P.-T.</creatorcontrib><creatorcontrib>Williams, D.</creatorcontrib><creatorcontrib>Doutriaux, C.</creatorcontrib><creatorcontrib>Pascucci, V.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Potter, K.</au><au>Wilson, A.</au><au>Bremer, P.-T.</au><au>Williams, D.</au><au>Doutriaux, C.</au><au>Pascucci, V.</au><au>Johnson, C.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</atitle><btitle>2009 IEEE International Conference on Data Mining Workshops</btitle><stitle>ICDMW</stitle><date>2009-12</date><risdate>2009</risdate><spage>233</spage><epage>240</epage><pages>233-240</pages><issn>2375-9232</issn><eissn>2375-9259</eissn><isbn>1424453844</isbn><isbn>9781424453849</isbn><eisbn>9780769539027</eisbn><eisbn>0769539025</eisbn><abstract>Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2009.55</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2375-9232
ispartof 2009 IEEE International Conference on Data Mining Workshops, 2009, p.233-240
issn 2375-9232
2375-9259
language eng
recordid cdi_ieee_primary_5360497
source IEEE Xplore All Conference Series
subjects Computational modeling
Data analysis
Data visualization
Displays
Laboratories
Meteorology
Numerical models
Predictive models
Uncertainty
Weather forecasting
title Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ensemble-Vis:%20A%20Framework%20for%20the%20Statistical%20Visualization%20of%20Ensemble%20Data&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshops&rft.au=Potter,%20K.&rft.date=2009-12&rft.spage=233&rft.epage=240&rft.pages=233-240&rft.issn=2375-9232&rft.eissn=2375-9259&rft.isbn=1424453844&rft.isbn_list=9781424453849&rft_id=info:doi/10.1109/ICDMW.2009.55&rft.eisbn=9780769539027&rft.eisbn_list=0769539025&rft_dat=%3Cieee_CHZPO%3E5360497%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360497&rfr_iscdi=true