Loading…
Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data
Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3 |
---|---|
cites | |
container_end_page | 240 |
container_issue | |
container_start_page | 233 |
container_title | |
container_volume | |
creator | Potter, K. Wilson, A. Bremer, P.-T. Williams, D. Doutriaux, C. Pascucci, V. Johnson, C.R. |
description | Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields. |
doi_str_mv | 10.1109/ICDMW.2009.55 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5360497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5360497</ieee_id><sourcerecordid>5360497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3</originalsourceid><addsrcrecordid>eNo9jMlOw0AQRIdNIgQfOXGZH3CY6dnc3KIsEMmIA9sxapseYbBjZDtC8PVEYjmVql5VCXGm1URrhRer2fzmaQJK4cS5PZFgyFTw6AwqCPtiBCa4FMHhgTjRFqx1JrP28B8YOBZJ378qpTQaiwgjkS82PTdFzelj1V_KqVx21PBH273J2HZyeGF5N9BQ9UNVUi13pS3V1dcuaTeyjfJvLuc00Kk4ilT3nPzqWDwsF_ez6zS_vVrNpnlagsYhZQ8YERnYQWldKLyhLD5nO2M5sGZw0fjCoSVGDyqUigtyMQtMnimasTj_-a2Yef3eVQ11n2tnvLIYzDc8C1Hg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</title><source>IEEE Xplore All Conference Series</source><creator>Potter, K. ; Wilson, A. ; Bremer, P.-T. ; Williams, D. ; Doutriaux, C. ; Pascucci, V. ; Johnson, C.R.</creator><creatorcontrib>Potter, K. ; Wilson, A. ; Bremer, P.-T. ; Williams, D. ; Doutriaux, C. ; Pascucci, V. ; Johnson, C.R.</creatorcontrib><description>Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.</description><identifier>ISSN: 2375-9232</identifier><identifier>ISBN: 1424453844</identifier><identifier>ISBN: 9781424453849</identifier><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 9780769539027</identifier><identifier>EISBN: 0769539025</identifier><identifier>DOI: 10.1109/ICDMW.2009.55</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data analysis ; Data visualization ; Displays ; Laboratories ; Meteorology ; Numerical models ; Predictive models ; Uncertainty ; Weather forecasting</subject><ispartof>2009 IEEE International Conference on Data Mining Workshops, 2009, p.233-240</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5360497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5360497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Potter, K.</creatorcontrib><creatorcontrib>Wilson, A.</creatorcontrib><creatorcontrib>Bremer, P.-T.</creatorcontrib><creatorcontrib>Williams, D.</creatorcontrib><creatorcontrib>Doutriaux, C.</creatorcontrib><creatorcontrib>Pascucci, V.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><title>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</title><title>2009 IEEE International Conference on Data Mining Workshops</title><addtitle>ICDMW</addtitle><description>Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.</description><subject>Computational modeling</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Displays</subject><subject>Laboratories</subject><subject>Meteorology</subject><subject>Numerical models</subject><subject>Predictive models</subject><subject>Uncertainty</subject><subject>Weather forecasting</subject><issn>2375-9232</issn><issn>2375-9259</issn><isbn>1424453844</isbn><isbn>9781424453849</isbn><isbn>9780769539027</isbn><isbn>0769539025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9jMlOw0AQRIdNIgQfOXGZH3CY6dnc3KIsEMmIA9sxapseYbBjZDtC8PVEYjmVql5VCXGm1URrhRer2fzmaQJK4cS5PZFgyFTw6AwqCPtiBCa4FMHhgTjRFqx1JrP28B8YOBZJ378qpTQaiwgjkS82PTdFzelj1V_KqVx21PBH273J2HZyeGF5N9BQ9UNVUi13pS3V1dcuaTeyjfJvLuc00Kk4ilT3nPzqWDwsF_ez6zS_vVrNpnlagsYhZQ8YERnYQWldKLyhLD5nO2M5sGZw0fjCoSVGDyqUigtyMQtMnimasTj_-a2Yef3eVQ11n2tnvLIYzDc8C1Hg</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Potter, K.</creator><creator>Wilson, A.</creator><creator>Bremer, P.-T.</creator><creator>Williams, D.</creator><creator>Doutriaux, C.</creator><creator>Pascucci, V.</creator><creator>Johnson, C.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200912</creationdate><title>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</title><author>Potter, K. ; Wilson, A. ; Bremer, P.-T. ; Williams, D. ; Doutriaux, C. ; Pascucci, V. ; Johnson, C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational modeling</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Displays</topic><topic>Laboratories</topic><topic>Meteorology</topic><topic>Numerical models</topic><topic>Predictive models</topic><topic>Uncertainty</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Potter, K.</creatorcontrib><creatorcontrib>Wilson, A.</creatorcontrib><creatorcontrib>Bremer, P.-T.</creatorcontrib><creatorcontrib>Williams, D.</creatorcontrib><creatorcontrib>Doutriaux, C.</creatorcontrib><creatorcontrib>Pascucci, V.</creatorcontrib><creatorcontrib>Johnson, C.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Potter, K.</au><au>Wilson, A.</au><au>Bremer, P.-T.</au><au>Williams, D.</au><au>Doutriaux, C.</au><au>Pascucci, V.</au><au>Johnson, C.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data</atitle><btitle>2009 IEEE International Conference on Data Mining Workshops</btitle><stitle>ICDMW</stitle><date>2009-12</date><risdate>2009</risdate><spage>233</spage><epage>240</epage><pages>233-240</pages><issn>2375-9232</issn><eissn>2375-9259</eissn><isbn>1424453844</isbn><isbn>9781424453849</isbn><eisbn>9780769539027</eisbn><eisbn>0769539025</eisbn><abstract>Scientists increasingly use ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. In this article, we present Ensemble-Vis, a framework consisting of a collection of overview and statistical displays linked through a high level of interactivity. Ensemble-Vis allows scientists to gain key scientific insight into the distribution of simulation results as well as the uncertainty associated with the scientific data. In contrast to methods that present large amounts of diverse information in a single display, we argue that combining multiple linked displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate our framework using driving problems from climate modeling and meteorology and discuss generalizations to other fields.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2009.55</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2375-9232 |
ispartof | 2009 IEEE International Conference on Data Mining Workshops, 2009, p.233-240 |
issn | 2375-9232 2375-9259 |
language | eng |
recordid | cdi_ieee_primary_5360497 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Data analysis Data visualization Displays Laboratories Meteorology Numerical models Predictive models Uncertainty Weather forecasting |
title | Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ensemble-Vis:%20A%20Framework%20for%20the%20Statistical%20Visualization%20of%20Ensemble%20Data&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshops&rft.au=Potter,%20K.&rft.date=2009-12&rft.spage=233&rft.epage=240&rft.pages=233-240&rft.issn=2375-9232&rft.eissn=2375-9259&rft.isbn=1424453844&rft.isbn_list=9781424453849&rft_id=info:doi/10.1109/ICDMW.2009.55&rft.eisbn=9780769539027&rft.eisbn_list=0769539025&rft_dat=%3Cieee_CHZPO%3E5360497%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-e629f99e2e52c457b63a8fd82c44e7e1e25f36b594ae96207c0eba5f87ea6eaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5360497&rfr_iscdi=true |