Loading…

Dynamic Portfolio Analysis Based on Realized Higher Moments

Realized higher moments, which are the expansion of realized volatility in high-frequency time series, is proposed in the paper to measure the time-varying financial risk. The dynamic assets allocation is settled by Taylor series expansion of utility function. We apply realized higher moments to por...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiang Cui-xia, Liu Jing-dong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 364
container_issue
container_start_page 360
container_title
container_volume 6
creator Jiang Cui-xia
Liu Jing-dong
description Realized higher moments, which are the expansion of realized volatility in high-frequency time series, is proposed in the paper to measure the time-varying financial risk. The dynamic assets allocation is settled by Taylor series expansion of utility function. We apply realized higher moments to portfolio analysis, and derive dynamic portfolio strategy. Our model repair two defects in traditional portfolio theory, without considering higher moments risk and settle problem statically. High frequency financial data in Chinese stock markets are selected to make empirical research. The empirical results show that higher moments risk possess volatility cluster, and dynamic portfolio is obviously superior to static portfolio.
doi_str_mv 10.1109/ICNC.2009.273
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5366428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5366428</ieee_id><sourcerecordid>5366428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-702da95b06bf13b6917f9526cc373716daf6630d5ffd24b0f043f2fc54bb5fea3</originalsourceid><addsrcrecordid>eNotjjtPwzAURi1BJdrSkYnFfyDh2jf2xWIq4dFK5SHUvbITG4zyQHGW8Ospguk7w9HRx9iFgFwIMFfb8rnMJYDJJeEJWwBpo5BQ0ymbS6EoM0qpGVv8OgaQDJ6xVUqfAICCiMDM2c3d1Nk2Vvy1H8bQN7Hn6842U4qJ39rka953_M3bJn4feRPfP_zAn_rWd2M6Z7Ngm-RX_7tk-4f7fbnJdi-P23K9y6KBMSOQtTXKgXZBoNNGUDBK6qo6fiWhaxu0RqhVCLUsHAQoMMhQqcI5FbzFJbv8y0bv_eFriK0dpoNCrQt5jT8OMkip</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic Portfolio Analysis Based on Realized Higher Moments</title><source>IEEE Xplore All Conference Series</source><creator>Jiang Cui-xia ; Liu Jing-dong</creator><creatorcontrib>Jiang Cui-xia ; Liu Jing-dong</creatorcontrib><description>Realized higher moments, which are the expansion of realized volatility in high-frequency time series, is proposed in the paper to measure the time-varying financial risk. The dynamic assets allocation is settled by Taylor series expansion of utility function. We apply realized higher moments to portfolio analysis, and derive dynamic portfolio strategy. Our model repair two defects in traditional portfolio theory, without considering higher moments risk and settle problem statically. High frequency financial data in Chinese stock markets are selected to make empirical research. The empirical results show that higher moments risk possess volatility cluster, and dynamic portfolio is obviously superior to static portfolio.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 0769537367</identifier><identifier>ISBN: 9780769537368</identifier><identifier>DOI: 10.1109/ICNC.2009.273</identifier><identifier>LCCN: 2009903793</identifier><language>eng</language><publisher>IEEE</publisher><subject>dynamic portfolio ; Forward contracts ; Frequency estimation ; Frequency measurement ; high-frequency ; higher moments ; Mathematics ; Paper technology ; Portfolios ; Pricing ; realized volatility ; Risk analysis ; Time measurement ; Time series analysis</subject><ispartof>2009 Fifth International Conference on Natural Computation, 2009, Vol.6, p.360-364</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5366428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5366428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang Cui-xia</creatorcontrib><creatorcontrib>Liu Jing-dong</creatorcontrib><title>Dynamic Portfolio Analysis Based on Realized Higher Moments</title><title>2009 Fifth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Realized higher moments, which are the expansion of realized volatility in high-frequency time series, is proposed in the paper to measure the time-varying financial risk. The dynamic assets allocation is settled by Taylor series expansion of utility function. We apply realized higher moments to portfolio analysis, and derive dynamic portfolio strategy. Our model repair two defects in traditional portfolio theory, without considering higher moments risk and settle problem statically. High frequency financial data in Chinese stock markets are selected to make empirical research. The empirical results show that higher moments risk possess volatility cluster, and dynamic portfolio is obviously superior to static portfolio.</description><subject>dynamic portfolio</subject><subject>Forward contracts</subject><subject>Frequency estimation</subject><subject>Frequency measurement</subject><subject>high-frequency</subject><subject>higher moments</subject><subject>Mathematics</subject><subject>Paper technology</subject><subject>Portfolios</subject><subject>Pricing</subject><subject>realized volatility</subject><subject>Risk analysis</subject><subject>Time measurement</subject><subject>Time series analysis</subject><issn>2157-9555</issn><isbn>0769537367</isbn><isbn>9780769537368</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjjtPwzAURi1BJdrSkYnFfyDh2jf2xWIq4dFK5SHUvbITG4zyQHGW8Ospguk7w9HRx9iFgFwIMFfb8rnMJYDJJeEJWwBpo5BQ0ymbS6EoM0qpGVv8OgaQDJ6xVUqfAICCiMDM2c3d1Nk2Vvy1H8bQN7Hn6842U4qJ39rka953_M3bJn4feRPfP_zAn_rWd2M6Z7Ngm-RX_7tk-4f7fbnJdi-P23K9y6KBMSOQtTXKgXZBoNNGUDBK6qo6fiWhaxu0RqhVCLUsHAQoMMhQqcI5FbzFJbv8y0bv_eFriK0dpoNCrQt5jT8OMkip</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Jiang Cui-xia</creator><creator>Liu Jing-dong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200908</creationdate><title>Dynamic Portfolio Analysis Based on Realized Higher Moments</title><author>Jiang Cui-xia ; Liu Jing-dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-702da95b06bf13b6917f9526cc373716daf6630d5ffd24b0f043f2fc54bb5fea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>dynamic portfolio</topic><topic>Forward contracts</topic><topic>Frequency estimation</topic><topic>Frequency measurement</topic><topic>high-frequency</topic><topic>higher moments</topic><topic>Mathematics</topic><topic>Paper technology</topic><topic>Portfolios</topic><topic>Pricing</topic><topic>realized volatility</topic><topic>Risk analysis</topic><topic>Time measurement</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang Cui-xia</creatorcontrib><creatorcontrib>Liu Jing-dong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang Cui-xia</au><au>Liu Jing-dong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic Portfolio Analysis Based on Realized Higher Moments</atitle><btitle>2009 Fifth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2009-08</date><risdate>2009</risdate><volume>6</volume><spage>360</spage><epage>364</epage><pages>360-364</pages><issn>2157-9555</issn><isbn>0769537367</isbn><isbn>9780769537368</isbn><abstract>Realized higher moments, which are the expansion of realized volatility in high-frequency time series, is proposed in the paper to measure the time-varying financial risk. The dynamic assets allocation is settled by Taylor series expansion of utility function. We apply realized higher moments to portfolio analysis, and derive dynamic portfolio strategy. Our model repair two defects in traditional portfolio theory, without considering higher moments risk and settle problem statically. High frequency financial data in Chinese stock markets are selected to make empirical research. The empirical results show that higher moments risk possess volatility cluster, and dynamic portfolio is obviously superior to static portfolio.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2009.273</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2009 Fifth International Conference on Natural Computation, 2009, Vol.6, p.360-364
issn 2157-9555
language eng
recordid cdi_ieee_primary_5366428
source IEEE Xplore All Conference Series
subjects dynamic portfolio
Forward contracts
Frequency estimation
Frequency measurement
high-frequency
higher moments
Mathematics
Paper technology
Portfolios
Pricing
realized volatility
Risk analysis
Time measurement
Time series analysis
title Dynamic Portfolio Analysis Based on Realized Higher Moments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20Portfolio%20Analysis%20Based%20on%20Realized%20Higher%20Moments&rft.btitle=2009%20Fifth%20International%20Conference%20on%20Natural%20Computation&rft.au=Jiang%20Cui-xia&rft.date=2009-08&rft.volume=6&rft.spage=360&rft.epage=364&rft.pages=360-364&rft.issn=2157-9555&rft.isbn=0769537367&rft.isbn_list=9780769537368&rft_id=info:doi/10.1109/ICNC.2009.273&rft_dat=%3Cieee_CHZPO%3E5366428%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-702da95b06bf13b6917f9526cc373716daf6630d5ffd24b0f043f2fc54bb5fea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5366428&rfr_iscdi=true