Loading…
Validating sensors in the field via spectral clustering based on their measurement data
In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Kung, H.T. Vlah, D. |
description | In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application. |
doi_str_mv | 10.1109/MILCOM.2009.5379940 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5379940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5379940</ieee_id><sourcerecordid>5379940</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1350-6e85b817781ad345844358ae81bfcb112dac514cf14dacededc51983b210ec1a3</originalsourceid><addsrcrecordid>eNpFkEtvwjAQhN0HUoHyC7j4D4R6_UjsY4X6QAJx6eOINvGmdRUCskOl_vuGFrWn2dGMPq2GsSmIGYBwN6vFcr5ezaQQbmZU4ZwWZ2wEWmptpHLynA0lGJMVxuYX_4HVl39BYQdsdAQ4ZUSRX7FJSh9CCJA2lw6G7PUFm-CxC-0bT9SmXUw8tLx7J14Hajz_DMjTnqouYsOr5pA6isdyiYk83_1UQ-RbwnSItKW24z0Or9mgxibR5KRj9nx_9zR_zJbrh8X8dpkF6D_KcrKmtFAUFtArbazWylgkC2VdlQDSY2VAVzXo_iJPvrfOqlKCoApQjdn0lxuIaLOPYYvxa3NaS30DbuxZKg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validating sensors in the field via spectral clustering based on their measurement data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kung, H.T. ; Vlah, D.</creator><creatorcontrib>Kung, H.T. ; Vlah, D.</creatorcontrib><description>In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.</description><identifier>ISSN: 2155-7578</identifier><identifier>ISBN: 1424452384</identifier><identifier>ISBN: 9781424452385</identifier><identifier>EISSN: 2155-7586</identifier><identifier>EISBN: 1424452392</identifier><identifier>EISBN: 9781424452392</identifier><identifier>DOI: 10.1109/MILCOM.2009.5379940</identifier><identifier>LCCN: 2009935076</identifier><language>eng</language><publisher>IEEE</publisher><subject>Battery charge measurement ; Calibration ; Data engineering ; Heart ; Indexing ; Instruments ; Peer to peer computing ; Protection ; Sensor phenomena and characterization ; Sensor systems</subject><ispartof>MILCOM 2009 - 2009 IEEE Military Communications Conference, 2009, p.1-10</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5379940$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5379940$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kung, H.T.</creatorcontrib><creatorcontrib>Vlah, D.</creatorcontrib><title>Validating sensors in the field via spectral clustering based on their measurement data</title><title>MILCOM 2009 - 2009 IEEE Military Communications Conference</title><addtitle>MILCOM</addtitle><description>In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.</description><subject>Battery charge measurement</subject><subject>Calibration</subject><subject>Data engineering</subject><subject>Heart</subject><subject>Indexing</subject><subject>Instruments</subject><subject>Peer to peer computing</subject><subject>Protection</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><issn>2155-7578</issn><issn>2155-7586</issn><isbn>1424452384</isbn><isbn>9781424452385</isbn><isbn>1424452392</isbn><isbn>9781424452392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtvwjAQhN0HUoHyC7j4D4R6_UjsY4X6QAJx6eOINvGmdRUCskOl_vuGFrWn2dGMPq2GsSmIGYBwN6vFcr5ezaQQbmZU4ZwWZ2wEWmptpHLynA0lGJMVxuYX_4HVl39BYQdsdAQ4ZUSRX7FJSh9CCJA2lw6G7PUFm-CxC-0bT9SmXUw8tLx7J14Hajz_DMjTnqouYsOr5pA6isdyiYk83_1UQ-RbwnSItKW24z0Or9mgxibR5KRj9nx_9zR_zJbrh8X8dpkF6D_KcrKmtFAUFtArbazWylgkC2VdlQDSY2VAVzXo_iJPvrfOqlKCoApQjdn0lxuIaLOPYYvxa3NaS30DbuxZKg</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Kung, H.T.</creator><creator>Vlah, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Validating sensors in the field via spectral clustering based on their measurement data</title><author>Kung, H.T. ; Vlah, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1350-6e85b817781ad345844358ae81bfcb112dac514cf14dacededc51983b210ec1a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Battery charge measurement</topic><topic>Calibration</topic><topic>Data engineering</topic><topic>Heart</topic><topic>Indexing</topic><topic>Instruments</topic><topic>Peer to peer computing</topic><topic>Protection</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kung, H.T.</creatorcontrib><creatorcontrib>Vlah, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kung, H.T.</au><au>Vlah, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validating sensors in the field via spectral clustering based on their measurement data</atitle><btitle>MILCOM 2009 - 2009 IEEE Military Communications Conference</btitle><stitle>MILCOM</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2155-7578</issn><eissn>2155-7586</eissn><isbn>1424452384</isbn><isbn>9781424452385</isbn><eisbn>1424452392</eisbn><eisbn>9781424452392</eisbn><abstract>In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.</abstract><pub>IEEE</pub><doi>10.1109/MILCOM.2009.5379940</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-7578 |
ispartof | MILCOM 2009 - 2009 IEEE Military Communications Conference, 2009, p.1-10 |
issn | 2155-7578 2155-7586 |
language | eng |
recordid | cdi_ieee_primary_5379940 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Battery charge measurement Calibration Data engineering Heart Indexing Instruments Peer to peer computing Protection Sensor phenomena and characterization Sensor systems |
title | Validating sensors in the field via spectral clustering based on their measurement data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validating%20sensors%20in%20the%20field%20via%20spectral%20clustering%20based%20on%20their%20measurement%20data&rft.btitle=MILCOM%202009%20-%202009%20IEEE%20Military%20Communications%20Conference&rft.au=Kung,%20H.T.&rft.date=2009-10&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2155-7578&rft.eissn=2155-7586&rft.isbn=1424452384&rft.isbn_list=9781424452385&rft_id=info:doi/10.1109/MILCOM.2009.5379940&rft.eisbn=1424452392&rft.eisbn_list=9781424452392&rft_dat=%3Cieee_6IE%3E5379940%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1350-6e85b817781ad345844358ae81bfcb112dac514cf14dacededc51983b210ec1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5379940&rfr_iscdi=true |