Loading…

Validating sensors in the field via spectral clustering based on their measurement data

In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying...

Full description

Saved in:
Bibliographic Details
Main Authors: Kung, H.T., Vlah, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Kung, H.T.
Vlah, D.
description In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.
doi_str_mv 10.1109/MILCOM.2009.5379940
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5379940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5379940</ieee_id><sourcerecordid>5379940</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1350-6e85b817781ad345844358ae81bfcb112dac514cf14dacededc51983b210ec1a3</originalsourceid><addsrcrecordid>eNpFkEtvwjAQhN0HUoHyC7j4D4R6_UjsY4X6QAJx6eOINvGmdRUCskOl_vuGFrWn2dGMPq2GsSmIGYBwN6vFcr5ezaQQbmZU4ZwWZ2wEWmptpHLynA0lGJMVxuYX_4HVl39BYQdsdAQ4ZUSRX7FJSh9CCJA2lw6G7PUFm-CxC-0bT9SmXUw8tLx7J14Hajz_DMjTnqouYsOr5pA6isdyiYk83_1UQ-RbwnSItKW24z0Or9mgxibR5KRj9nx_9zR_zJbrh8X8dpkF6D_KcrKmtFAUFtArbazWylgkC2VdlQDSY2VAVzXo_iJPvrfOqlKCoApQjdn0lxuIaLOPYYvxa3NaS30DbuxZKg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validating sensors in the field via spectral clustering based on their measurement data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kung, H.T. ; Vlah, D.</creator><creatorcontrib>Kung, H.T. ; Vlah, D.</creatorcontrib><description>In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.</description><identifier>ISSN: 2155-7578</identifier><identifier>ISBN: 1424452384</identifier><identifier>ISBN: 9781424452385</identifier><identifier>EISSN: 2155-7586</identifier><identifier>EISBN: 1424452392</identifier><identifier>EISBN: 9781424452392</identifier><identifier>DOI: 10.1109/MILCOM.2009.5379940</identifier><identifier>LCCN: 2009935076</identifier><language>eng</language><publisher>IEEE</publisher><subject>Battery charge measurement ; Calibration ; Data engineering ; Heart ; Indexing ; Instruments ; Peer to peer computing ; Protection ; Sensor phenomena and characterization ; Sensor systems</subject><ispartof>MILCOM 2009 - 2009 IEEE Military Communications Conference, 2009, p.1-10</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5379940$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5379940$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kung, H.T.</creatorcontrib><creatorcontrib>Vlah, D.</creatorcontrib><title>Validating sensors in the field via spectral clustering based on their measurement data</title><title>MILCOM 2009 - 2009 IEEE Military Communications Conference</title><addtitle>MILCOM</addtitle><description>In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.</description><subject>Battery charge measurement</subject><subject>Calibration</subject><subject>Data engineering</subject><subject>Heart</subject><subject>Indexing</subject><subject>Instruments</subject><subject>Peer to peer computing</subject><subject>Protection</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><issn>2155-7578</issn><issn>2155-7586</issn><isbn>1424452384</isbn><isbn>9781424452385</isbn><isbn>1424452392</isbn><isbn>9781424452392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtvwjAQhN0HUoHyC7j4D4R6_UjsY4X6QAJx6eOINvGmdRUCskOl_vuGFrWn2dGMPq2GsSmIGYBwN6vFcr5ezaQQbmZU4ZwWZ2wEWmptpHLynA0lGJMVxuYX_4HVl39BYQdsdAQ4ZUSRX7FJSh9CCJA2lw6G7PUFm-CxC-0bT9SmXUw8tLx7J14Hajz_DMjTnqouYsOr5pA6isdyiYk83_1UQ-RbwnSItKW24z0Or9mgxibR5KRj9nx_9zR_zJbrh8X8dpkF6D_KcrKmtFAUFtArbazWylgkC2VdlQDSY2VAVzXo_iJPvrfOqlKCoApQjdn0lxuIaLOPYYvxa3NaS30DbuxZKg</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Kung, H.T.</creator><creator>Vlah, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200910</creationdate><title>Validating sensors in the field via spectral clustering based on their measurement data</title><author>Kung, H.T. ; Vlah, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1350-6e85b817781ad345844358ae81bfcb112dac514cf14dacededc51983b210ec1a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Battery charge measurement</topic><topic>Calibration</topic><topic>Data engineering</topic><topic>Heart</topic><topic>Indexing</topic><topic>Instruments</topic><topic>Peer to peer computing</topic><topic>Protection</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kung, H.T.</creatorcontrib><creatorcontrib>Vlah, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kung, H.T.</au><au>Vlah, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validating sensors in the field via spectral clustering based on their measurement data</atitle><btitle>MILCOM 2009 - 2009 IEEE Military Communications Conference</btitle><stitle>MILCOM</stitle><date>2009-10</date><risdate>2009</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2155-7578</issn><eissn>2155-7586</eissn><isbn>1424452384</isbn><isbn>9781424452385</isbn><eisbn>1424452392</eisbn><eisbn>9781424452392</eisbn><abstract>In this paper we introduce a spectral-based method for validating sensor nodes in the field via clustering of sensors based on their measurement data. We formalize the notion of peer consistency in measurement data by introducing a notion called ¿sensor indexing¿ and model the problem of identifying bad sensors as a problem of detecting peer inconsistency. Suppose all sensors have peers. Then by examining a certain number of leading eigenvectors of the measurement data matrix, we can identify those bad sensors which are inconsistent to peer sensors in their reported measurements. Further, we show that by deemphasizing or removing measurements obtained from these bad sensors we can improve the performance of sensor-based applications. We have implemented this spectral-based peer validation method and measured its performance by simulation. We report the effectiveness of the method in identifying bad sensors, and demonstrate its use in deriving accurate solutions in a localization application.</abstract><pub>IEEE</pub><doi>10.1109/MILCOM.2009.5379940</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-7578
ispartof MILCOM 2009 - 2009 IEEE Military Communications Conference, 2009, p.1-10
issn 2155-7578
2155-7586
language eng
recordid cdi_ieee_primary_5379940
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Battery charge measurement
Calibration
Data engineering
Heart
Indexing
Instruments
Peer to peer computing
Protection
Sensor phenomena and characterization
Sensor systems
title Validating sensors in the field via spectral clustering based on their measurement data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validating%20sensors%20in%20the%20field%20via%20spectral%20clustering%20based%20on%20their%20measurement%20data&rft.btitle=MILCOM%202009%20-%202009%20IEEE%20Military%20Communications%20Conference&rft.au=Kung,%20H.T.&rft.date=2009-10&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2155-7578&rft.eissn=2155-7586&rft.isbn=1424452384&rft.isbn_list=9781424452385&rft_id=info:doi/10.1109/MILCOM.2009.5379940&rft.eisbn=1424452392&rft.eisbn_list=9781424452392&rft_dat=%3Cieee_6IE%3E5379940%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1350-6e85b817781ad345844358ae81bfcb112dac514cf14dacededc51983b210ec1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5379940&rfr_iscdi=true